additions of a 0.25 M solution of AgPF
regime (equating to sequential ca. 0.12 mol equivalents of Ag(
6
within the same solvent
tion to Ag(
from the traditionally employed C
dominate the field of metallo-helicate chemistry and provides
valuable insight into metal directed self-assembly processes.
We are currently extending this series further.
We thank Enterprise Ireland for financial support, Drs A.C.
Lees and T. Gunnlaugsson for helpful discussion and Drs J.
O’Brien (NMR) and M. Feeney (ESMS) for assistance.
I
). This approach represents a significant move away
I
)
2
-symmetric ligands that
with each addition), Fig. 2. Several points of note can be taken
from this experiment. Firstly, the final spectrum is identical to
that obtained above. Secondly, those protons that undergo the
largest shifts (b, c, d, e) do so before the addition of 1.5
equivalents, whereupon no further appreciable shifting is
observed up to and beyond 2.5 equivalents. Thirdly, a slight
inflection point may be discerned within the plots of those
protons undergoing marginal shifts (a, f, g) at ca. 1 : 1
stoichiometry.
1
4
Notes and references
‡
Full synthetic details will be given elsewhere. Selected data for L: Found
C, 72.22; H, 4.55; N, 16.31; [C36 ]·2.25 H O requires C, 72.28; H,
.30; N, 16.39%. H NMR (400 MHz; 4 : 1 CD CN–CDCl ): d 8.71 (3 H,
d, J = 4.0 Hz, H ), 8.66 (3 H, s, H ), 8.19 (3 H, d, J = 8.0 Hz, H ), 7.89 (3
H, dd, J = 8.0, 6.0 Hz, H ), 7.45 (3 H, dd, J = 6.0, 4.0 Hz, H ), 7.35 (6 H,
d, 7.0 Hz, H ), 7.19 (6 H, d, J = 7.0 Hz, H ). nmax/cm 1625(s), 1581(s),
H N
27 7
2
1
5
3
3
a
e
d
c
b
21
f
g
+
1
§
(
499(s), 1319(s). ESMS m/z 558.24 [L] .
39.5 31 7
Crystal data for L·(toluene)0.5 C H N , M = 603.71, orange prism
¯
0.25 3 0.20 3 0.08), triclinic P1, a = 10.1332(8) Å, b = 11.0554(8) Å,
c = 16.6857(13) Å, a = 70.954(2)°, b = 75.751(2)°, g = 74.992(2)°, V =
3
23
1
0
679.7(2) Å , T = 153(2) K, Z = 2, Dcalc = 1.194 g cm , m(Mo–Ka) =
1
2
.073 mm , Bruker SMART APEX CCD diffractometer, Mo–Ka
radiation (l = 0.71073 Å). 3144 independent reflections, 2049 observed (I
> 2s(I)). R = 0.0987, wR = 0.2723 for observed reflections. CCDC
05745. See http://www.rsc.org/suppdata/cc/b3/b302652c/ for crystallo-
graphic data in .cif or other electronic format.
Selected data for [Ag ][PF : Found: C, 46.09; H, 3.06; N, 10.60.
Ag (C36 ][PF requires C, 45.86; H, 3.53; N, 10.40%. H NMR
(400 MHz; 4 : 1 CD CN–CDCl ): d 8.81 (6 H, s, H ), 8.72 (6 H, d, J = 5.0
Hz, H ), 8.13 (6 H, dd, J = 7.5, 6.0 Hz, H ), 7.96 (6 H, d, J = 7.5 Hz, H ),
.70 (6 H, dd, J = 6.0, 5.0 Hz, H ), 7.32 (12 H, d, J = 8.5 Hz, H ), 7.01 (12
Fig. 2 Compleximetric titration of L (1.06 3 102 M) with AgPF
5
1
2
6
(0.25 M)
2
showing Dd of assigned protons with successive additions {400 MHz,
CDCN–CDCl (4 : 1) 298 K}.
3
¶
[
3
L
2
6 3
]
1
These observations may be rationalised in the following way:
3
H
27
N
)
7 2
6 3
]
2+
3
3
e
2 2
successive additions firstly lead to [Ag L ] , a dinuclear
a
c
d
species at 1 : 1 stoichiometry. The presence of this species may
account for the inflection within the plots for a, f, and g, as these
protons begin to feel through-space effects of the neighbouring
strand. This species, potentially a dinuclear double helicate, has
7
b
f
3+
H, d, J = 8.5 Hz, H
g 3 2
). ESMS, m/z 479.762 [Ag L ] .
1
J.-M. Lehn, Supramolecular Chemistry, Concepts and Perspectives,
VCH, Weinheim, 1995, pp 139–160; R. Robson, in Comprehensive
Supramolecular Chemistry, eds. J. L. Atwood, J. E. D. Davies, D. D.
MacNicol, F. Vögtle and J.-M. Lehn, Pergamon, Oxford, 1997, Vol. 6,
p. 733; G. F. Swiegers and T. J. Malefeste, Chem. Rev., 2000, 100,
3483.
two vacant coordination sites. Further addition of Ag(
I) binds
the two vacant sites together to give the tri-nuclear product:
3
+
[Ag
3
L
2
] , which is robust in the presence of excess Ag( ) and
I
1
non-fluxional as the H NMR spectrum is well resolved.
But what does [Ag
3+
3
L
2
]
look like? Based upon the above
2
3
(a) A. Marquis, J. P. Kintzinger, R. Graff, P. N. W. Baxter and J.-M.
Lehn, Angew. Chem., Int. Ed., 2002, 41, 2760; (b) M. B. Zaman, K.
Udachin, M. Akhtaruzzaman, Y. Yamashita and J. A. Ripmeester,
Chem. Commun., 2002, 2322.
Y. Suenaga, T. Kuroda-Sowa, M. Maekawa and M. Munakata, J. Chem.
Soc., Dalton Trans., 1999, 2737; B. J. O’ Keefe and P. J. Steel, Inorg.
Chem. Commun., 1998, 1, 147; M. Albrecht and S. Kotila, Chem.
Commun., 1996, 2309.
evidence we propose, and molecular modelling supports, that
3+
[
Ag
complex is reflected in each arm, as they cross over the Ag–Ag
axis. Helical complexes based upon C -symmetric ligand types
3 2
L ] is a helicate complex, Fig. 3. The helical nature of the
2
may exist in either a helical form (rac-isomer) or as a metallo-
cyclophane (meso-isomer, the ligands do not cross the M–M
axis), and may interconvert between each (as evidenced by their
fluxional behaviour in solution).6c Whilst this is an option here,
4 D. W. Johnson, J. Xu, R. W. Saalfrank and K. N. Raymond, Angew.
Chem., Int. Ed., 1999, 38, 2882.
the three-armed nature of the complex ensures that a helical
species must exist even if the meso-isomer is formed i.e. it is
impossible to coordinate three arms without at least two arms
crossing the Ag–Ag axis (ESI).
5
B. J. Holliday and C. A. Mirkin, Angew. Chem., Int. Ed., 2001, 40, 2022;
M. Fujita, Struct. Bonding, 2000, 96, 177; P. J. Stang and B. Olenyuk,
Acc. Chem. Res., 1997, 30, 502.
6
(a) O. Mamula and A. von Zelewsky, J. Chem. Soc., Dalton Trans.,
In conclusion, we have shown for the first time that a rigid
2
000, 219; (b) C. Piguet, G. Bernardinelli and G. Hopfgartner, Chem.
C
3
-symmetric ligand readily forms helical species on coordina-
Rev., 1997, 97, 2005; (c) M. Albrecht, Chem. Rev., 2001, 101, 3457; (d)
E. C. Constable, Tetrahedron, 1992, 48, 10013.
7
P. E. Kruger, N. Martin and M. Nieuwenhuyzen, J. Chem. Soc., Dalton
Trans., 2001, 1966; J. Keegan, P. E. Kruger, M. Nieuwenhuyzen and N.
Martin, Cryst. Growth Design, 2002, 2, 329.
8
9
J. Keegan, P. E. Kruger, M. Nieuwenhuyzen, J. O’Brien and N. Martin,
Chem. Commun., 2001, 2092.
(a) N. Yoshida, K. Ichikawa and M. Shiro, J. Chem. Soc., Perkin Trans
2
, 2000, 17; (b) M. J. Hannon, C. L. Painting, A. Jackson, J. Hamblin
and W. Errington, Chem. Commun., 1997, 1807.
1
1
1
1
0 D. Hellwinkel and H. Fritsch, Chem. Ber., 1990, 123, 2207; O. Fischer,
A. Fritzen and S. Eilles, J. Prakt. Chem., 1909, 79, 563.
1 B. Conerney, P. Jensen, P. E. Kruger and C. MacGloinn, unpublished
work.
2 SMART and SAINT-NT, Bruker-AXS, Madison, WI, 1998; G. M.
Sheldrick, SHELXTL Version 5.1, Bruker-AXS, Madison, WI, 1998.
3 M. J. Hannon, C. L. Painting and N. W. Alcock, Chem. Commun., 1999,
2
023.
Fig. 3 Proposed structure of [Ag
3
L
2
]3+ showing the helical nature of each
14 N. Fatin-Rouge, S. Blanc, A. Pfeil, A. Rigault, A.-M. Albrecht-Gray and
strand.
J.-M. Lehn, Helv. Chim. Acta, 2001, 84, 1694.
CHEM. COMMUN., 2003, 1274–1275
1275