CLUSTER
Conversion of Furfuryl Alcohols into 4-Hydroxy-2-cyclopentenones
2039
the rearrangement of furfuryl alcohol (1) to cyclopenten- 162.4, 141.2, 139.2, 134.9, 134.6, 115.7, 114.6, 73.2, 72.6, 60.0,
5
9.3, 36.1, 35.8, 17.5, 14.6.
one 2 with considerable improvement of yield. The short
residence time of 1 (<1 min) in the microreactor setup
overcome problems of stability of the product 2 being en-
countered under conventional heating conditions that re-
quired reaction times of 22–48 hours.
5
-Ethyl-4-hydroxycyclopenten-2-enone (5c)
1
Yield 54% (trans/cis = 7:1). H NMR (300 MHz, CDCl ): d = 7.52–
3
7
4
.49 (dd, 1 H, J = 5.8, 2.2 Hz), 6.20–6.17 (dd, 1 H, J = 5.8, 1.2 Hz),
.7 (br s, 1 H), 2.22–2.16 (m, 1 H), 1.93–1.84 (m, 1 H), 1.58–1.48
1
3
(
=
m, 1 H), 1.02 (t, 3 H, J = 7.4 Hz). C NMR (75.5 MHz, CDCl ): d
3
208.2, 161.9, 134.4, 76.3, 56.6, 21.5, 11.6.
Conversion of Furfuryl Alcohol (1) into 4-Hydroxy-2-cyclopen-
tenone (2) in a Microreactor
Reactor Setup (Figure 3)
Two HPLC pumps (inlet A and B) were connected to a 5 m stainless
steel tube (0.75 mm i.d.) via a T-connector; 4 m of this steel tube
were coiled up and immersed in a heating bath, followed by a 0.3 m
coiled cooling zone (approx. 20 °C). The outlet of the reactor was
connected to a 68.9 bar back pressure regulator, followed by a 0.4
mm PTFE syringe filter (Ø 25 mm) to crack the resulting emulsion.
The residence volume of the heated coil was 1.77 mL.
4
-Hydroxy-5-pentylcyclopenten-2-enone (5d)
1
Yield 65% (E/Z = 1:1; trans/cis = 7:1). H NMR (300 MHz, CDCl ):
3
d = 7.50–7.48 (dd, 1 H, J = 5.8, 2.2 Hz), 6.17–6.14 (dd, 1 H, J = 5.8,
1
1
CDCl ): d = 208.8, 162.2, 134.2, 70.1, 55.4, 31.9, 28.6, 27.0, 22.5,
1
.2 Hz), 4.65 (m, 1 H), 2.14–2.18 (m, 1 H), 1.85–1.78 (m, 1 H),
1
3
.42–1.29 (m, 6 H), 0.86 (t, 3 H, J = 7.0 Hz). C NMR (75.5 MHz,
3
4.1.
Acknowledgment
Procedure
This work was supported by the Deutsche Bundesumweltstiftung
(KONAROM, AZ 26920) and the Fonds der Chemischen Industrie.
A solution of 12.5 g (127 mmol) furfuryl alcohol (1) in H O was ad-
2
justed to pH 4.0 with diluted AcOH (total volume 500 mL). The
heating bath was brought to 240 °C. The aq furfuryl alcohol solu-
tion was introduced to inlet A at a flow rate of 1.8 mL/min, toluene
was introduced to inlet B at flow rate of 0.2 mL/min (total flow rate
References and Notes
(
1) Diercks, R.; Arndt, J.-D.; Freyer, S.; Geier, R.;
Machhammer, O.; Schwartze, J.; Volland, M. Chem. Eng.
Technol. 2008, 31, 631.
2
.0 mL/min, average residence time 53 s). Product collection started
after 10 min to ensure steady state conditions. Then, 500 mL reac-
tion mixture were collected over 250 min, corresponding to 450 mL
of the aq furfuryl alcohol solution.
(
2) (a) Weisser, R.; Yue, W. M.; Reiser, O. Org. Lett. 2005, 7,
5353. (b) Jezek, E.; Schall, A.; Kreitmeier, P.; Reiser, O.
The aqueous phase was separated from the organic layer and
Synlett 2005, 915. (c) Schinnerl, M.; Bohm, C.; Seitz, M.;
Reiser, O. Tetrahedron: Asymmetry 2003, 14, 765.
(d) Nosse, B.; Chhor, R. B.; Jeong, W. B.; Böhm, C.; Reiser,
O. Org. Lett. 2003, 5, 941. (e) Chhor, R. B.; Nosse, B.;
Sorgel, S.; Bohn, C.; Seitz, M.; Reiser, O. Chem. Eur. J.
washed with MeOt-Bu (3 × 30 mL). The H O was evaporated to
2
give 9.79 g (87%) crude 2 as yellow-orange liquid, GC purity 97%.
–
2
Short path distillation 10 mbar (oil bath temperature 80–85 °C)
yielded 8.34 g (74%) 2 as a pale yellow liquid, GC purity 99%.
2
003, 9, 260. (f) Böhm, C.; Reiser, O. Org. Lett. 2001, 3,
General Procedure for the Rearrangement of 5 under Micro-
wave Reactions
A 10 mL closed microwave glass vessel was charged with the ap-
1315. (g) Böhm, C.; Schinnerl, M.; Bubert, C.; Zabel, M.;
Labahn, T.; Parisini, E.; Reiser, O. Eur. J. Org. Chem. 2000,
955.
2
propriate furfuryl alcohol 5 (1.5 mmol) in 6 mL of distilled H O.
2
(
(
(
3) Rodrigues, F. Chem. Eng. Technol. 2008, 31, 883.
4) Zeitsch, K. J. DE 38 42 825 A1, 1988.
5) Selected examples: (a) Ellison, A. Synthesis 1973, 397.
The reaction mixture was heated in the microwave at 300 W for the
time indicated (Table 1). The aqueous phase was extracted with
EtOAc, and the organic phase was evaporated. The crude product
was purified by column chromatography.
(
b) Harre, M.; Raddatz, P.; Walenta, R.; Winterfeldt, E.
Angew. Chem., Int. Ed. Engl. 1982, 21, 480. (c) Dyatkina,
N.; Costisella, B.; Theil, F.; von Janta-Lipinski, M.
4
-Hydroxy-5-phenylcyclopenten-2-enone (5a)
1
Tetrahedron Lett. 1994, 35, 1961. (d) Borthwick, A. D.;
Biggadike, K. Tetrahedron 1992, 50, 571. (e) Knight, S. D.;
Overman, L. E.; Pairaudeau, G. J. Am. Chem. Soc. 1995,
117, 5776. (f) Collins, P. W.; Djuric, S. W. Chem. Rev.
1993, 93, 1533. (g) Mulzer, J.; Giester, G.; Gilbert, M. Helv.
Chim. Acta 2005, 88, 1560. (h) Kalidindi, S.; Jeong, W. B.;
Schall, A.; Bandichhor, R.; Nosse, B.; Reiser, O. Angew.
Chem. Int. Ed. 2007, 46, 6361. (i) Mihara, H.; Sohtome, Y.;
Matsunaga, S.; Shibasaki, M. Chem. Asian J. 2008, 3, 359.
Yield 96% (trans/cis = 5:1). H NMR (300 MHz, CDCl ): d (trans)
=
2
J = 2.8 Hz), 2.69 (br s, 1 H). C NMR (75.5 MHz, CDCl ): d =
2
3
7.60 (dd, 1 H, J = 2.2, 5.7 Hz), 7.35–7.26 (m, 3 H), 7.13–7.10 (m,
H), 6.31 (dd, 1 H, J = 1.3, 5.8 Hz), 4.95 (br s, 1 H), 3.42 (d, 1 H,
1
3
3
1
05.5, 161.9, 136.8, 134.0, 129.0, 128.6, 127.5, 79.0, 62.2. H NMR
(
7
4
300 MHz, CDCl ): d (cis) = 7.60 (dd, 1 H, J = 2.2, 5.7 Hz), 7.35–
3
.26 (m, 3 H), 7.13–7.10 (m, 2 H), 6.45 (dd, 1 H, J = 1.2, 5.8 Hz),
1
3
.95 (br s, 1 H), 3.84 (d, 1 H, J = 6.3 Hz), 2.69 (br s, 1 H). C NMR
(
1
75.5 MHz, CDCl ): d = 205.5, 161.9, 136.8, 134.0, 129.0, 128.6,
3
(
j) Harikrishna, M.; Mohan, H. R.; Dubey, P. K.; Subbaraju,
27.5, 79.0, 62.2.
G. V. Synth. Commun. 2009, 39, 2763. (k) Nicolaou, K. C.;
Tang, Y. F.; Wang, J. H. Angew. Chem. Int. Ed. 2009, 48,
3449.
5
-(But-2-enyl)-4-hydroxycyclopent-2-enone (5b)
1
Yield 73% (trans/cis = 12:1). H NMR (300 MHz, CDCl3):
d = 7.52–7.49 (dd, 1 H, J = 2.3, 5.8 Hz), 7.48–7.46 (dd, 1 H, J = 2.3,
5
(
6) (a) Krüger, G.; Harde, C.; Bohlmann, F. Tetrahedron Lett.
1
985, 26, 6027. (b) Curran, T. T.; Hay, D. A.; Koegel, C. P.
.8 Hz), 6.19–6.15 (m, 2 H), 5.98–5.87 (m, 1 H), 5.68–5.56 (m, 1
Tetrahedron 1997, 53, 1983. (c) Basra, S. K.; Drew, M. G.
B.; Mann, J.; Kane, P. D. J. Chem. Soc., Perkin Trans. 2000,
1, 3592. (d) Ghorpade, S. R.; Bastawade, K. B.; Gokhale,
D. V.; Shinde, P. D.; Mahajan, V. A.; Kalkote, U. R.;
H), 5.15–4.98 (m, 4 H), 4.71 (br s, 2 H), 2.90–2.70 (m, 2 H), 2.38–
.37 (m, 1 H), 2.28–2.25 (m, 1 H), 1.22 (d, 3 H, J = 6.9 Hz), 0.94
2
13
(
d, 3 H, J = 7.0 Hz). C NMR (75.5 MHz, CDCl ): d = 207.6, 162.6,
3
Synlett 2010, No. 13, 2037–2040 © Thieme Stuttgart · New York