K. Shioji et al. / Tetrahedron Letters 44 (2003) 1103–1105
1105
Scheme 3.
The obtained phosphinates 1 and 2 are converted into
P-chiral phosphine oxides by several organomagnesium
reagents without racemization.13 We then tried substitu-
tion of the ethoxy ligand of P-chiral phosphinate
(RP,R)-1a to a vinyl group.
12, 3139; (c) Kielbasinski, P.; Omelanczuk, J.; Mikola-
jczyk, M. Tetrahedron: Asymmetry 1998, 9, 3283.
8. Shioji, K.; Ueno, Y.; Kurauchi, Y.; Okuma, K. Tetra-
hedron Lett. 2001, 42, 6569.
9. Haynes, R. K.; Lam, W. W.-L.; Yeung, L.-L. Tetra-
hedron Lett. 1996, 37, 4729.
Reaction of TBS ether (RP,R)-4a, which was prepared
from (RP,R)-1a with tert-butyldimethylsilyl chloride
(TBSCl), with vinylmagnesium bromide afforded the
corresponding vinylphosphine oxide (RP,R)-5a in 48%
10. The major products (SP,S) and (RP,R)-1 were purified by
preferential crystallization from ethyl acetate–hexane.
Satisfactory elemental analyses were obtained for all new
compounds. Ethyl (1-hydroxyethyl)phenylphosphinate
(1a); major products; 1H NMR (400 MHz, CDCl3) l=
1.33 (dd, J=6.8, 16.8 Hz, 3H), 1.36 (t, J=6.8 Hz, 3H),
3.97–4.22 (m, 3H) 7.45–7.85 (m, 5H); 13C NMR (100
MHz, CDCl3) l=16.4 (JPC=5.0 Hz), 16.97 (JPC=3.2
Hz), 61.5 (JPC=7.5 Hz), 65.9 (JPC=116.0 Hz), 128.4,
128.6, 128.8, 132.4, 132.5, 132.6, 132.7; 31P NMR (162
MHz, CDCl3) l=42.4. Ethyl (1-hydroxypropyl)-
phenylphosphinate (1b); major products; 1H NMR (400
MHz, CDCl3) l=1.03 (t, J=7.4 Hz, 3H), 1.35 (t, J=6.8
Hz, 3H), 1.50–1.77 (m, 2H), 3.86–4.00 (m, 1H), 4.01–4.21
(m, 2H), 7.49–7.86 (m, 5H); 13C NMR (100 MHz,
CDCl3) l=10.50 (JPC=12.5 Hz), 16.5 (JPC=4.9 Hz),
24.2, 61.4 (JPC=5.8 Hz), 71.7 (JPC=87.1 Hz), 127.8,
128.4, 128.5, 132.4, 132.5, 132.6, 132.7; 31P NMR (162
MHz, CDCl3) l=41.4. Ethyl (1-hydroxy-2-methyl-
propyl)phenylphosphinate (1c); major products; 1H
NMR (400 MHz, CDCl3) l=1.02 (d, J=2.0 Hz, 6H),
1.34 (t, J=7.0 Hz, 3H) 1.92–2.04 (m, 1H), 3.73–3.78 (m,
1H), 3.94–4.22 (m, 2H) 7.47–7.87 (m, 5H); 13C NMR
(100 MHz, CDCl3) l=16.5 (JPC=5.8 Hz), 17.3 (JPC=5.8
Hz), 20.2 (JPC=10.0 Hz), 29.4, 75.2 (JPC=109.0 Hz),
128.6, 128.7, 129.9, 132.1, 132.3, 132.4, 132.5; 31P NMR
(162 MHz, CDCl3) l=40.7.
1
yield (Scheme 3). H NMR and HPLC analysis of 5a
indicated that racemization did not occur in the course
of substitution. Thus, the optically active vinyl phos-
phine oxide, which is used as precursor of other func-
tional phosphine oxides, was obtained.1
References
1. For review, see: Pietrusiewicz, K. M.; Zablocka, M.
Chem. Rev. 1994, 94, 1375.
2. For review, see: (a) Holz, J.; QuirmBach, M.; Borner, A.
Synthesis 1997, 983; (b) Sawamura, M.; Ito, Y. Chem.
Rev. 1992, 92, 857.
3. (a) Okuma, K.; Tanaka, Y.; Ohta, H.; Matsuyama, H.
Bull. Chem. Soc. Jpn. 1993, 66, 2623; (b) Hall, D.; Sevin,
A.-F.; Warren, S. Tetrahedron Lett. 1991, 32, 7123.
4. (a) Bartels, B.; Clayden, J.; Martin, C. G.; Nelson, A.;
Russell, M. G.; Warren, S. J. Chem. Soc., Perkin Trans.
1 1999, 1807; (b) Clayden, J.; Collington, E. W.; Lamont,
R. B.; Warren, S. Tetrahedron Lett. 1993, 34, 2203.
5. Harmat, N. J. S.; Warren, S. Tetrahedron Lett. 1990, 31,
2743.
11. Dale, J. A.; Mosher, H. S. J. Am. Chem. Soc. 1973, 95,
521.
6. Albert, J.; Cadena, J. M.; Delgado, S.; Granell, J. J.
Organomet. Chem. 2000, 603, 235.
12. Kazlauskas, R. J.; Wiessfloch, A. N. E.; Rappaport, A.
T.; Cuccia, L. A. J. Org. Chem. 1991, 56, 2656.
13. Lewis, R. A.; Mislow, K. J. Am. Chem. Soc. 1969, 91,
7009.
7. (a) Kielbasinski, P.; Albrycht, M.; Luczak, J.; Mikola-
jczyk, M. Tetrahedron: Asymmetry 2002, 13, 735; (b)
Zurawinski, R.; Nakmura, K.; Drabowicz, J.; Kielbasin-
ski, P.; Mikolajczyk, M. Tetrahedron: Asymmetry 2001,