7908
J . Org. Chem. 1997, 62, 7908-7909
Sch em e 1a
A Con ver gen t, En a n tioselective Tota l
Syn th esis of Str ep togr a m in An tibiotic
(-)-Ma d u m ycin II†
Arun K. Ghosh* and Wenming Liu1
Department of Chemistry, University of Illinois at Chicago,
845 West Taylor Street, Chicago, Illinois 60607
Received September 2, 1997
With the increasing threat of resistant microbes, the
search for antibacterial agents effective against these
pathogens is of contemporary interest in medicine.2 The
emergence of methicillin-resistant S. aureus or MRSA is
particularly alarming since this strain of bacteria is
resistant to all current antibiotics except vancomycin,
which is burdened by its serious side effects.3 The
streptogramin antibiotics are comprised of two main
groups; the group A antibiotics exhibit synergism with
group B, and the possible mode of action includes the
inhibition of protein synthesis by interfering with the
bacterial ribosomal function.4 Molecular modification
and combination of both classes of streptogramins have
been shown to be effective against MRSA and erythro-
mycin-resistant S. aureus and S. epidermidis.5 The
significant therapeutic potential of streptogramins con-
tinues to foster immense synthetic interest.6 Represen-
tative of group A streptogramins are madumycin II7 and
virginiamycin,8 and their first enantioselective syntheses
have been recently reported by Meyers9 and Schlessing-
er,10 respectively. We herein report a convergent and
enantioselective total synthesis of (-)-madumycin II.
Our synthetic plan was to construct the oxazole-
containing 1,3-diol synthon 15 and R,â-unsaturated acid
unit 19 stereoselectively and assemble madumycin II by
a macrolactonization strategy. To set both stereogenic
centers of the 1,3-diol, an enzymatic asymmetrization of
meso-diacetate 2 provided the monoacetate 3 in 95%
enantiomeric excess (Scheme 1).11 The hydroxyl group
a
Key: (a) acetyl cholinesterase, pH ) 7 buffer, 12 h, 85%; (b)
MOMCl, i-Pr2NEt, DMAP, 95%; (c) O3, MeOH-CH2Cl2 (1:1), -78
°C, then Me2S, -78 to +23 °C; (d) NaBH4, EtOH, 0 °C, 2 h, 95%;
(e) aqueous MeOH, Et3N, 23 °C, 12 h; (f) Me2C(OMe)2, p-TsOH
(cat.), CH2Cl2, 23 °C, 1 h, 90%; (g) PCC, 4A-sieves, CH2Cl2, 6 h;
(h) Ph3PdC(Me)CHO, PhMe, 114 °C, 12 h; (i) NaH, (EtO)2P(O)-
CH2CO2Et, 82%; (j) DIBAL-H, CH2Cl2, -78 °C, 1 h, 95%; (k) MsCl,
Et3N, CH2Cl2; (l) NaN3, DMF, 23 °C, 8 h, 67%; (m) p-TsOH, MeOH,
23 °C, 12 h; (n) LiCN, THF-EtOH (1:1), 80 °C, 2 h, 75%; (o)
aqueous 4N NaOH, MeOH, 60 °C, 8 h then H3O+; (p) BOP,
i-Pr2NEt, O-TBS-L-serine methyl ester, MeCN, 23 °C, 5 h, 72%;
(q) TBAF, THF, 0 °C, 1 h; (r) Burgess salt, THF, 23 °C, 6 h; (s)
CuBr2, DBU, HMTA, CH2Cl2, 42 °C, 5 h, 45% from 12; (t) aqueous
LiOH, THF, 23 °C, 4 h then H3O+; (u) D-alanine-OMe, BOP,
i-Pr2NEt, MeCN, 99%; (v) HS(CH2)3SH, Et3N, MeOH, 65%.
† This manuscript is dedicated to Professor A. I. Meyers on the
occasion of his 65th birthday.
(1) (a) University Fellow. (b) Present address: Novartis Pharma-
ceuticals Corporation, Process R & D, East Hanover, NJ 07936.
(2) J aynes, B. H.; Dirlam, J . P.; Hecker, S. C. Annu. Rep. Med. Chem.
1996, 31, 121.
(3) (a) Service, R. F. Science 1995, 270, 724. (b) Neu, H. C. Science
1992, 257, 1064.
(4) (a) Purvis, M. B.; LeFevre, J . W.; J ones, V. L.; Kingston, D. G.
I.; Biot, A. M.; Gossele, F. J . Am. Chem. Soc. 1989, 111, 5931. (b)
Parfait, R.; Cocito, C. Proc. Natl. Acad. Sci. U.S.A. 1980, 77, 5492.
(5) Brighty, K. E.; McGuirk, P. R. Annu. Rep. Med. Chem. 1991,
26, 123.
(6) (a) Meyers, A. I.; Walker, D. G. J . Org. Chem. 1982, 47, 2999.
(b) Nagao, Y.; Yamada, S.; Fujita, E. Tetrahedron Lett. 1983, 24, 2287.
(c) Wood, R. D.; Ganem, B. ibid. 1983, 24, 4391. (d) Fujita, E.
Hetereocycles 1984, 21, 41. (e) Meyers, A. I.; Spohn, R. F.; Linderman,
R. J . J . Org. Chem. 1985, 50, 3633. (f) Schlessinger, R. H.; Iwanowicz,
E. J .; Springer, J . P. Ibid. 1986, 51, 3070. (g) Liu, L.; Tanke, R. S.;
Miller, M. J . Org. Chem. 1986, 51, 5332. (h) Adje, N.; Breulles, P.;
Uguen, D. Tetrahedron Lett. 1992, 33, 2151. (i) Helquist, P.; Bergdahl,
M.; Hett, R.; Gangloff, A. R.; Demillequand, M.; Cottard, M.; Mader,
M. M.; Friebe, T. L.; Iqbal, J .; Wu, Y.; Akermark, B.; Rein, T.; Kann,
N. Pure Appl. Chem. 1994, 66, 2063 and references therein.
(7) (a) Brazhnikova, M. G.; Kudinova, M. K.; Potapova, N. P.;
Fillipova, T. M.; Borowski, E.; Zelinski, Y.; Golik, J . Bioorgan. Khim.
1976, 2, 149. (b) Chamberlin, J . W.; Chen, S. J . Antibiot. 1977, 30,
197.
(8) Delpierre, G. R.; Eastwood, F. W.; Gream, G. E.; Kingston, D.
G. I.; Lord Todd, A. R.; Williams, D. H. J . Chem. Soc. C 1966, 1653.
(9) Tavares, F.; Lawson, J . P.; Meyers, A. I. J . Am. Chem. Soc. 1996,
118, 3303.
(10) Schlessinger, R. H.; Li, Y.-J . J . Am. Chem. Soc. 1996, 118, 3301.
(11) Busato, S.; Tinembart, O.; Zhang, Z.; Scheffold, R. Tetrahedron
1990, 46, 3155.
in 3 was protected as methoxymethyl (MOM) ether 4 in
95% yield.12 Ozonolysis of 4 provided the corresponding
dialdehyde, which was reduced with sodium borohydride
to furnish the diol 5. The removal of the acetate group
in 5 afforded the triol, which was protected as the
isopropylidene derivative 6 in 90% yield. Oxidation of
the alcohol 6 with PCC followed by Wittig olefination
furnished the R,â-unsaturated aldehyde 7 (E:Z ratio 10:
1). Exposure of the aldehyde 7 to a Horner-Emmons
olefination with triethyl phosphonoacetate afforded the
E,E-diene ester 8 in 82% yield from 6. Dibal-H reduction,
followed by mesylation of the resulting alcohol, afforded
(12) Stork, G.; Takahashi, T. J . Am. Chem. Soc. 1977, 99, 1275.
S0022-3263(97)01616-2 CCC: $14.00 © 1997 American Chemical Society