C O M M U N I C A T I O N S
(2) Howarth, M.; Chinnapen, D. J.; Gerrow, K.; Dorrestein, P. C.; Grandy,
M. R.; Kelleher, N. L.; El-Husseini, A.; Ting, A. Y. Nat. Methods 2006,
3, 267-273.
(3) Hu, Q.; Tay, L. L.; Noestheden, M.; Pezacki, J. P. J. Am. Chem. Soc.
2007, 129, 14-15.
(4) Grosveld, F.; Rodriguez, P.; Meier, N.; Krpic, S.; Pourfarzad, F.;
Papadopoulos, P.; Kolodziej, K.; Patrinos, G. P.; Hostert, A.; Strouboulis,
J. Ann. N.Y. Acad. Sci. 2005, 1054, 55-67.
(5) de Boer, E.; Rodriguez, P.; Bonte, K.; Krijgsveld, J.; Katsantoni, E.; Heck,
A.; Grosveld, F.; Strouboulis, J. Proc. Natl. Acad. Sci. U.S.A. 2003, 100,
7480-7485.
are accepted by P. horikoshii and yeast biotin ligases, respectively.
The crystal structures of PhBL in complex with biotin and the biotin
adenylate ester have recently been solved,16 but comparison to BirA
crystal structures26,27 reveals a high degree of structural similarity
in the biotin binding pockets and no insight into the differential
small-molecule substrate specificities of the two enzymes. No
structure is yet available for yeast biotin ligase.
Azides and alkynes are useful functional group handles that have
been widely exploited in chemical biology for protein,25,28-30
DNA,31-33 sugar,9,34 small-molecule,35 and virus tagging36 in vitro,
on the surface of living cells, and in living organisms. To truly
harness the power of azide and alkyne-based bio-orthogonal ligation
reactions, however, it is desirable to couple them with general
methodology for site-specific introduction of azides and alkynes
onto proteins or other biomolecules, particularly inside living cells.
We note that both DTB-Az and cis-PB are more hydrophobic than
biotin (based on HPLC retention times, Figure 3), suggesting that
they should be at least as membrane-permeable as biotin, which
crosses mammalian cell membranes by passive diffusion at
concentrations greater than 2 µM.37 In addition, at low concentra-
tions, biotin is actively transported across the membrane by the
sodium-dependent multivitamin transporter (SMVT).38 The SMVT
has been shown to interact with biotin analogues such as desthio-
biotin,38 so DTB-Az and cis-PB may be actively transported across
mammalian membranes as well.
(6) Scholle, M. D.; Collart, F. R.; Bay, B. K. Protein Expr. Purif. 2004, 37,
243-252.
(7) Beckett, D.; Kovaleva, E.; Schatz, P. J. Protein Sci. 1999, 8, 921-929.
(8) Chen, I.; Howarth, M.; Lin, W.; Ting, A. Y. Nat. Methods 2005, 99-
104.
(9) Agard, N. J.; Baskin, J. M.; Prescher, J. A.; Lo, A.; Bertozzi, C. R. ACS
Chem. Biol. 2006, 1, 644-648.
(10) Rostovtsev, V. V.; Green, L. G.; Fokin, V. V.; Sharpless, K. B. Angew.
Chem., Int. Ed. 2002, 41, 2596-2599.
(11) Green, N. M. Biochem. J. 1966, 101, 774-780.
(12) Meisenheimer, K. M.; Koch, T. H. Crit. ReV. Biochem. Mol. Biol. 1997,
32, 101-140.
(13) Ja¨ger, S.; Rasched, G.; Kornreich-Leshem, H.; Engeser, M.; Thum, O.;
Famulok, M. J. Am. Chem Soc. 2005, 127, 15071-15082.
(14) Kopp, M.; Rupprath, C.; Irschik, H.; Bechthold, A.; Elling, L.; Mu¨ller,
R. Chembiochem 2007, 8, 813-819.
(15) Chapman-Smith, A.; Cronan, J. E., Jr. J. Nutr. 1999, 129, 477S-484S.
(16) Bagautdinov, B.; Kuroishi, C.; Sugahara, M.; Kunishima, M. J. Mol. Biol.
2005, 353, 322-333.
(17) Streaker, E. D.; Beckett, D. Biochemistry 2006, 45, 6417-6425.
(18) Campeau, E.; Gravel, R. A. J. Biol. Chem. 2001, 276, 12310-12316.
(19) Polyak, S. W.; Chapman-Smith, A.; Brautigan, P. J.; Wallace, J. C. J.
Biol. Chem. 1999, 274, 32847-32854.
A future challenge will be to improve the kinetics of both ligation
reactions and to demonstrate their utility with peptide rather than
protein substrates (for instance, with the yBL acceptor peptide that
we recently discovered by phage display21). These efforts may be
accomplished through a combination of rational mutagenesis and
in vitro evolution.
(20) Bower, S.; Perkins, J.; Yocum, R. R.; Serror, P.; Sorokin, A.; Rahaim,
P.; Howitt, C. L.; Prasad, N.; Erhlich, S. D.; Pero, J. J. Bacteriol. 1995,
177, 2572-2575.
(21) Chen, I.; Choi, Y.-A., Ting, A. Y. J. Am. Chem. Soc. 2007, 129, 6619-
6625.
(22) Cronan, J. E., Jr. J. Biol. Chem. 1990, 265, 10327-10333.
(23) Leo´n-Del-Rio, A.; Gravel, R. A. J. Biol. Chem. 1994, 269, 22964-22968.
(24) Chapman-Smith, A.; Turner, D. L.; Cronan, J. E., Jr.; Morris, T. W.;
Wallace, J. C. Biochem. J. 1994, 302, 881-887.
Acknowledgment. We thank the NIH (R01 GM072670-01 and
1PN2EY018244), MIT, the Sloan Foundation, the Dreyfus Founda-
tion (Teacher-Scholar Award), and Pfizer-Laubach for supporting
this work. S.S. was supported by a Whitaker Health Sciences Fund
graduate fellowship. I.C. was supported by graduate research
fellowships from the NSF and Wyeth Research/ACS Division of
Organic Chemistry. Y.-A.C. was supported by a Samsung Lee Kun
Hee Scholarship. We thank John E. Cronan, Jr., Roy Gravel, and
Mark Howarth for helpful advice, and Tanabe U.S.A. for biotin.
(25) Kiick, K. L.; Saxon, E.; Tirrell, D. A.; Bertozzi, C. R. Proc. Natl. Acad.
Sci. U.S.A. 2002, 99, 19-24.
(26) Wilson, K. P.; Shewchuk, L. M.; Brennan, R. G.; Otsuka, A. J.; Matthews,
B. W. Proc. Natl. Acad. Sci. U.S.A. 1992, 89, 9257-9261.
(27) Wood, Z. A.; Weaver, L. H.; Brown, P. H.; Beckett, D.; Matthews, B.
W. J. Mol. Biol. 2006, 357, 509-523.
(28) Dieterich, D. C.; Link, A. J.; Graumann, J.; Tirrell, D. A.; Schuman, E.
M. Proc. Natl. Acad. Sci. U.S.A. 2006, 103, 9482-9487.
(29) Dieters, A.; Cropp, T. A.; Mukherji, M.; Chin, J. W.; Anderson, J. C.;
Schultz, P. G. J. Am. Chem. Soc. 2003, 125, 11782-11783.
(30) Liu, W.; Brock, A.; Chen, S.; Chen, S.; Schultz, P. G. Nat. Methods 2007,
4, 239-244.
(31) Gierlich, J.; Burley, G. A.; Gramlich, P. M.; Hammond, D. M.; Carell, T.
Supporting Information Available: Experimental protocols for
synthesis of DTB-Az and cis-PB, cloning and purification of proteins,
biotinylation assays, analogue screens, HPLC and ESI-MS assays, and
kinetic measurements. Sources of expression plasmid gifts. SDS-PAGE
analysis and biotinylation activity of all enzymes toward p67, use of
cis-PB vs trans-PB, ESI-MS of DTB-Az and cis-PB ligated to p67 with
controls, kinetics of DTB-Az and cis-PB use compared to biotin. This
Org. Lett. 2006, 17, 3639-3642.
(32) Weisbrod, S. H.; Marx, A. Chem. Commun. 2007, 1828-1830.
(33) Chandra, R. A.; Douglas, E. S.; Mathies, R. A.; Bertozzi, C. R.; Francis,
M. B. Angew. Chem., Int. Ed. 2006, 45, 896-901.
(34) Agard, N. J.; Prescher, J. A.; Bertozzi, C. R. J. Am. Chem. Soc. 2004,
126, 15046-15047.
(35) Speers, A. E.; Adam, G. C.; Cravatt, B. F. J. Am. Chem. Soc. 2003, 125,
4686-4687.
(36) Wang, Q.; Chan, T. R.; Hilgraf, R.; Fokin, V. V.; Sharpless, K. B.; Finn,
M. G. J. Am. Chem. Soc. 2003, 125, 3192-3193.
(37) Gore´, J.; Hoinard, C.; Maingault, P. Biochim. Biophys. Acta 1986, 856,
357-361.
References
(38) Park, S.; Sinko, P. J. Drug. Metab. Dispos. 2005, 33, 1547-1554.
(1) Howarth, M.; Takao, K.; Hayashi, Y.; Ting, A. Y. Proc. Natl. Acad. Sci.
U.S.A. 2005, 102, 7583-7588.
JA076655I
9
1162 J. AM. CHEM. SOC. VOL. 130, NO. 4, 2008