Page 3 of 3
ChemComm
DOI: 10.1039/C3CC47581F
are also ubiquitous class of metabolites, present in all living
organisms23. In humans and animals Nꢀmethylated lysine,
45 arginine and nucleic acid compounds play crucial roles in
epigenetic regulation. We hope that the development of
appropriate fluorinated small molecules will enable work aimed
at understanding role of methylation in epigenetics.
Notes and references
50 a Department of Chemistry, University of Oxford, Chemistry Research
Laboratory, 12 Mansfield Road, Oxford OX1 3TA, United Kingdom
b Structural Genomics Consortium, University of Oxford, Old Road
Campus Roosvelt Drive, Headington OX3 7DQ, United Kingdom
§Current address: Navarrabiomed-Fundacion Miguel Servet.
55 C/Irunlarrea 3. Complejo Hospitalario de Navarra. 31008 Pamplona.
Navarra. Spain.
Figure 3 Levels of CAR (4), GBB (3) and GBBNF (9) in HEK 293T
cells: Aꢀ control, B – treated with TML (1), C – treated with TMLNF
(11). Error bars represent standard deviation of n=3 samples.
5
Pseudomonas sp. AK1 (psBBOX). We observed that GBBNF (9)
is converted to CARNF (14) in crude cell lysates, providing 2OG
was added to the reaction mixture and that turnover level is
dependent on 2OG concentration (Fig. S7). The extent of
GBBNF (9) turnover is dependent on the amount of psBBOX
† Electronic Supplementary Information (ESI) available: synthesis
procedures,
assay
conditions,
NMR
assignments.
See
DOI: 10.1039/b000000x/
60 ‡ We thank the Wellcome Trust, Biotechnology and Biological Sciences
Research Council, European Union, Dulverton Trust (A.M.R.) and
Cancer Research UK (AT) for financial support.
10 present in the extracts (Fig. 2C, S8). Thus, 19F NMR can be used
to estimate psBBOX activities in cell lysates.
1. R. J. Wanders, P. Vreken, M. E. den Boer, F. A. Wijburg, A. H. van
In addition to the use as a label for 19F NMR studies, fluorine is a
convenient marker for small molecules in MS based studies. We
therefore investigated the metabolism of TMLNF (11) in human
15 kidney cells (HEK 293T cells) using LCꢀMS. HEK 293T cells
were grown either with or without TML (1) or TMLNF (11)
added to the growth media. Cells were harvested, lysed and
analysed for the carnitine related metabolites (Fig. 3), using
appropriate standards (Fig. S10). In none of the samples could
20 TML (1) or TMLNF (11) be detected. In the sample treated with
TML (1), elevated levels of GBB (3) were observed; indicating
TML (1) penetrates cell membranes and is converted to GBB (3).
Cells treated with TMLNF (11) contained lower amounts of GBB
(3) than controls and substantial levels of GBBNF (9), which can
25 only be formed from TMLNF (11), demonstrating TMLNF (11)
is carried through the first enzyme catalysed step of carnitine
biosynthesis. All of the samples contained similar levels of
carnitine (within error), but no CARNF (14) was observed in the
TMLNF (11) treated sample; this result may reflect the
30 differences in affinities of GBB (3) and GBBNF (11) to hBBOX,
as reflected in the in vitro by kinetic data (Table 1).
65
Gennip and I. J. L, J. Inherit. Metab. Dis., 1999, 22, 442ꢀ487.
2. K. Strijbis, F. M. Vaz and B. Distel, IUBMB Life, 2010, 62, 357ꢀ362.
3. C. Hoppel, Am. J. Kidney Dis., 2003, 41, S4ꢀ12.
4. C. J. Rebouche and H. Seim, Annu. Rev. Nutr., 1998, 18, 39ꢀ61.
5. R. P. Hausinger, Crit. Rev. Biochem. Mol. Biol., 2004, 39, 21ꢀ68.
70 6. C. Loenarz and C. J. Schofield, Nat. Chem. Bio., 2008, 4, 152ꢀ156.
7. M. Dambrova, E. Liepinsh and I. Kalvinsh, Trends Cardiovasc.
Med., 2002, 12, 275ꢀ279.
8. Y. Hayashi, T. Kirimoto, N. Asaka, M. Nakano, K. Tajima, H.
Miyake and N. Matsuura, Eur. J. Pharmacol., 2000, 395, 217ꢀ224.
75 9. I. K. H. Leung, T. J. Krojer, G. T. Kochan, L. Henry, F. Von Delft, T.
D. W. Claridge, U. Oppermann, M. A. McDonough and C. J.
Schofield, Chem. Biol., 2010, 17, 1316ꢀ1324.
10. L. Henry, I. K. H. Leung, T. D. W. Claridge and C. J. Schofield,
Bioorg. Med. Chem. Lett., 2012, 22, 4975ꢀ4978.
80 11. A. M. Rydzik, I. K. H. Leung, G. T. Kochan, A. Thalhammer, U.
Oppermann, T. D. W. Claridge and C. J. Schofield, ChemBioChem,
2012, 13, 1559ꢀ1563.
12. S. Purser, P. R. Moore, S. Swallow and V. Gouverneur, Chem. Soc.
Rev., 2008, 37, 320ꢀ330.
85 13. A. Vulpetti and C. Dalvit, Drug Discov. Today, 2012, 17, 890ꢀ897.
14. C. Dalvit, Prog. Nucl. Mag. Res. Sp., 2007, 51, 243ꢀ271.
15. H. Chen, S. Viel, F. Ziarelli and L. Peng, Chem. Soc. Rev., 2013.
16. J. Hu, W. Zhang and F. Wang, Chem. Commun., 2009, 7465ꢀ7478.
17. G. K. S. Prakash, I. Ledneczki, S. Chacko and G. A. Olah, Org. Lett.,
In conclusion we have described an efficient procedure for the
synthesis of the electrophilic monofluoromethylation reagent17
(7) that enables convenient preparation of fluoromethylated
35 quaternary ammonium derivatives, e.g. trimethyllysine and
carnitine related compounds. The utility of these compounds for
enzymatic assays was demonstrated employing 19F NMR with
recombinant hBBOX and crude cell lysates. LCꢀMS studies
enabled tracking of fluorinated intermediates in human cells.
90
2008, 10, 557ꢀ560.
18. G. K. S. Prakash and S. Chacko, Curr. Opin. Drug Discovery Dev.,
2008, 11, 793ꢀ802.
19. D. P. Matthews, R. A. Persichetti and J. R. McCarthy, Org. Prep.
Proced. Int., 1994, 26, 605ꢀ608.
95 20. E. Flashman, S. L. Davies, K. K. Yeoh and C. J. Schofield, Biochem.
J., 2010, 427, 135ꢀ142.
21. M. Tischer, G. Pradel, K. Ohlsen and U. Holzgrabe, ChemMedChem,
2012, 7, 22ꢀ31.
40 Quaternary
ammonium
derivatives
have
widespread
22. T. Ooi and K. Maruoka, Angew. Chem. –Int. Edit., 2007, 46, 4222ꢀ
100
4266.
pharmaceutical and industrial applications e.g. as antimicrobial
agents21 or phase transfer catalysts in organic chemistry22. They
23. U. Anthoni, C. Christophersen, L. Hougaard and P. H. Nielsen,
Comp. Biochem. Phys. B, 1991, 99, 1ꢀ18.
105
This journal is © The Royal Society of Chemistry [year]
Journal Name, [year], [vol], 00–00 | 3