Journal of the American Chemical Society
COMMUNICATION
’ REFERENCES
(1) Baker, D. L.; Schmidt, M. L.; Cohn, S. L.; Maris, J. M.; London,
W. B.; Buxton, A.; Stram, D.; Castleberry, R. P.; Shimada, H.; Sandler, A.;
Shamberger, R. C.; Look, A. T.; Reynolds, C. P.; Seeger, R. C.; Matthay,
K. K. New Engl. J. Med. 2010, 363, 1313.
(2) Maris, J. M.; Hogarty, M. D.; Bagatell, R.; Cohn, S. L. Lancet
2007, 369, 2106.
(3) Mujoo, K.; Cheresh, D. A.; Yang, H. M.; Reisfeld, R. A. Cancer
Res. 1987, 47, 1098.
(4) Cheung, N. K. V.; Saarinen, U. M.; Neely, J. E.; Landmeier, B.;
Donovan, D.; Coccia, P. F. Cancer Res. 1985, 45, 2642.
(5) Kramer, K.; Gerald, W. L.; Kushner, B. H.; Larson, S. M.;
Hameed, M.; Cheung, N. K. V. Med. Pediatr. Oncol. 2001, 36, 194.
(6) Svennerholm, L.; Bostrom, K.; Fredman, P.; Jungbjer, B.; Lekman,
A.; Mansson, J. E.; Rynmark, B. M. Biochem. Biophys. Acta 1994, 1214, 115.
(7) Navid, F.; Barfield, R. C.; Handgretinger, R.; Sondel, P. M.; Shulkin,
B. L.; Kaufman, R.; Billups, C.; Wu, J.; Furman, W. L.; McGregor, L. M.;
Otto, M.; Gillies, S.; Santana, V. M. J. Clin. Oncol. 2011, 29 (Suppl.), 9523.
(8) Navid, F.; Santana, V. M.; Barfield, R. C. Curr. Cancer Drug
Targets 2010, 10, 200.
(9) Sorkin, L. S.; Otto, M.; Baldwin, W. M.; Vail, E.; Gillies, S. D.;
Handgretinger, R.; Barfield, R. C.; Yu, H. M.; Yu, A. L. Pain 2010, 149, 135.
(10) Yu, A. L.; et al. New Engl. J. Med. 2010, 363, 1324.
(11) Li, X.; Zhou, H.; Yang, L.; Du, G.; Pai-Panandiker, A. S.; Huang,
X.; Yan, B. Biomaterials 2011, 32, 2540 .
Figure 4. Enhancement of radiation cytotoxicity to neuroblastoma cells
by HPGNPs. All cells were treated with or without HGNP, PTX, and
HPGNP for 12 h. After exposure to X-rays (3 Gy dose), all particles or drugs
were removed, and fresh medium was added. After another 48 h, cell viability
was measured using the WST-1 method. The concentrations of HPGNPs in
(gÀi) were kept the same as that of HGNPs, so the PTX concentrations on
HPGNPs were identical to those in (dÀf).
(12) Zhou, H. Y.; Jiao, P. F.; Yang, L.; Li, X.; Yan, B. J. Am. Chem. Soc.
2011, 133, 680.
(13) Chattopadhyay, N.; Cai, Z. L.; Pignol, J. P.; Keller, B.; Lechtman,
E.; Bendayan, R.; Reilly, R. M. Mol. Pharmaceutics 2010, 7, 2194.
(14) Hainfeld, J. F.; Dilmanian, F. A.; Zhong, Z.; Slatkin, D. N.;
Kalef-Ezra, J. A.; Smilowitz, H. M. Phys. Med. Biol. 2010, 55, 3045.
(15) Jiao, P. F.; Zhou, H. Y.; Chen, L. X.; Yan, B. Curr. Med. Chem.
2011, 18, 2086.
(16) Jelveh, S.; Chithrani, D. B. Cancers 2011, 3, 1081.
(17) Chithrani, D. B.; Jelveh, S.; Jalali, F.; van Prooijen, M.; Allen, C.;
Bristow, R. G.; Hill, R. P.; Jaffray, D. A. Radiat. Res. 2010, 173, 719.
(18) Terasima, T.; Tolmach, L. J. Nature 1961, 190, 1210.
(19) Dunne, A. L.; Mothersill, C.; Robson, T.; Wilson, G. D.; Hirst,
D. G. Oncol. Res. 2004, 14, 447.
drive them to the G2/M phase of the cell cycle, thus making them
highly vulnerable to radiation; and significantly enhance radia-
tion-induced cell death. HPGNPs did not bind GD2-negative
cells and caused little toxicity or radiation-induced cell death in
these cells. Our data demonstrate the power and flexibility of
nanotechnology in treating complex diseases such as cancer by
using multiple strategies to attack cancer cells from multifunc-
tional nanoconstructs, a task that is difficult to achieve by using a
small molecule alone.
(20) Hennequin, C. Cancer Radiother. 2004, 8 (Suppl. 1), S95.
(21) Voss, S. D.; Smith, S. V.; DiBartolo, N.; McIntosh, L. J.; Cyr, E. M.;
Bonab, A. A.; Dearling, J. L.; Carter, E. A.; Fischman, A. J.; Treves, S. T.;
Gillies, S. D.; Sargeson, A. M.; Huston, J. S.; Packard, A. B. Proc. Natl. Acad.
Sci. U.S.A. 2007, 104, 17489.
(22) Vavere, A.; Butch, E.; Dearling, J.; Packard, A.; Snyder, S. J. Nucl.
Med. 2010, 51 (Suppl. 2), 480.
(23) Goda, K.; Bacso, Z.; Szabo, G. Curr. Cancer Drug Targets 2009,
9, 281.
(24) Inge, T. H.; Harris, N. L.; Wu, J. Q.; Azizkhan, R. G.; Priebe, W.
’ ASSOCIATED CONTENT
S
Supporting Information. Preparation and characteriza-
b
tion of GNPs, HGNPs, HPGNPs, and β-CD derivatives; cell
culture; GD2 expression measurement; cellular uptake of
HPGNPs; competition experiment with free hu14.18K322A;
dark-field microscopy; TEM; release of PTX; cell cycle assay;
cytotoxicity assay; and complete ref 10. This material is available
J. Surg. Res. 2004, 121, 187.
(25) Kuss, B. J.; Corbo, M.; Lau, W. M.; Fennell, D. A.; Dean, N. M.;
Cotter, F. E. Int. J. Cancer 2002, 98, 128.
’ AUTHOR INFORMATION
(26) Goto, H.; Yang, B.; Petersen, D.; Pepper, K. A.; Alfaro, P. A.; Kohn,
D. B.; Reynolds, C. P. Mol. Cancer Ther. 2003, 2, 911.
(27) Keshelava, N.; Groshen, S.; Reynolds, C. P. Cancer Chemother.
Pharmacol. 2000, 45, 1.
Corresponding Author
(28) Tweddle, D. A.; Pearson, A. D. J.; Haber, M.; Norris, M. D.; Xue,
C.; Flemming, C.; Lunec, J. Cancer Lett. 2003, 197, 93.
’ ACKNOWLEDGMENT
We thank Sharon Frase, Linda Mann, Jennifer Peters, Tom
Mohaupt, and Richard Ashmun for technical assistance and
Merck KGaA for the generous gift of hu14.18K322A antibody.
We also thank Cherise M. Guess for editing and checking the text
of the manuscript. This work was supported by the National
Basic Research Program of China (2010CB933504), the Na-
tional Natural Science Foundation of China (90913006 and
21077068), the National Cancer Institute (P30CA027165), and
the American Lebanese Syrian Associated Charities (ALSAC).
13921
dx.doi.org/10.1021/ja206118a |J. Am. Chem. Soc. 2011, 133, 13918–13921