3446
S. Ashoka et al. / Inorganica Chimica Acta 363 (2010) 3442–3447
using any templates. In this method, ethylene glycol serves only
E2(low)
as a capping agent but ammonia acts as both complexing and cap-
ping agent. The preliminary measurement of the catalytic proper-
ties suggests that the obtained ZnO materials could have
potentially valuable applications in Friedel–Crafts acylation for
the synthesis of industrially important and useful organic
compounds.
E2(high)
Acknowledgements
A1(TO)
2ndorader
The authors acknowledge the financial support from the
Department of Science and Technology, NSTI Phase-IV, New Delhi,
Government of India. We also thank Prof. Sarala Upadhya, Depart-
ment of Mechanical Engineering, UVCE, Bangalore, for recording
the SEM images.
E1(LO)
200
400
600
800
1000
Raman shift (cm-1)
References
Fig. 5. Raman spectrum of hollow structured ZnO.
[1] M.F. Garca, A.M. Arias, J.C. Hanson, J.A. Rodriguez, Chem. Rev. 104 (2004) 4063.
[2] W. Chen, Y.H. Lu, M. Wang, L. Croner, H. Paul, H.J. Fecht, J. Bednarcik, K. Stahl,
Z.L. Zhang, U. Wiedwald, U. Kaiser, P. Ziemann, T. Kikegawa, C.D. Wu, J.Z. Jiang,
J. Physc. Chem. C 113 (2009) 1320.
[3] W. Peng, S. Qu, G. Cong, Z. Wang, Cryst. Growth Des. 6 (2006) 1518.
[4] K.L. Chopra, S.R. Das, Thin Film Solar Cells, Plenum, New York, 1983.
[5] K.S. Weissenrieder, J. Muller, Thin Solid Films 300 (1997) 30.
[6] M. Yoshimoto, S. Takagi, Y. Umemura, M. Hada, H. Nakastuji, J. Catalysis 173
(1998) 53.
[7] W. An, X. Wu, X.C. Zeng, J. Phys. Chem. C 112 (2008) 5747.
[8] J.I. Shulin, Y.E. Changhui, J. Mater. Sci. Technol. 24 (2008).
[9] (a) Y.G. Sun, Y.N. Xia, Science 298 (2002) 2176;
(b) Y.L. Wang, L. Cai, Y.N. Xia, Adv. Mater. 17 (2005) 473;
(c) B.T. Holland, C.F. Blanford, A. Stein, Science 281 (1998) 538;
(d) A. Imhof, D.J. Pine, Nature 389 (1997) 948.
[10] H.J. Fan, R. Scholz, F.M. Kolb, M. Zacharias, U. Gosele, Solid State Comm. 130
(2004) 517.
[11] Y.H. Leung, H. Tamk, A.B. Djurisic, M.H. Xie, W.K. Chan, D. Lu, W.K. Ge, J. Cryst.
Growth 283 (2005) 134.
[12] Z.Y. Jiang, Z.X. Xie, X.H. Zhang, S.C. Lin, T. Xu, S.Y. Xie, R.B. Huang, L.S. Zheng,
Adv. Mater. 16 (2004) 904.
[13] S. Ravindran, G.T.S. Andavan, C. Ozkan, Nanotechnology 17 (2006) 723.
[14] J. Duan, X. Huang, E. Wang, H. Ai, Nanotechnology 17 (2006) 1786.
[15] Z. Li, Y. Xie, Y. Xiong, R. Zhang, New J. Chem. 27 (2003) 1518.
[16] C. Yan, D. Xue, J. Phys. Chem. B 110 (2006) 7102.
[17] C. Yan, D. Xue, J. Phys. Chem. B 110 (2006) 11076.
[18] M.C. Neves, T. Trinidade, A.M.B. Timmons, D.J. Pedrosa, Mater. Res. Bull. 36
(2001) 1099.
[19] P. Lipowsky, M. Hirscher, R.C. Hoffmann, J. Bill, F. Aldinger, Nanotechnology 18
(2007) 165603.
[20] L. Shi, F. Du, Mater. Res. Bull. 42 (2007) 1550.
Fig. 6. EDS spectrum of ZnO.
O
OMe
COCl
ZnO/CH2Cl2, 5 ml
RT, Stirring 20 min
+
OMe
[21] J.S. Lee, S.C. Choi, J. Eur. Ceramic Soc. 25 (2005) 3307.
[22] Corrie, L. Carnes, K.J. Klabunde, Langmuir 16 (2000) 3764.
[23] J.F. Moulder, W.F. Stickle, P.E. Sobol, K.D. Bomben, in: J. Chastain (Ed.), Hand
Book of X-ray Photoelectron Spectroscopy, Perking–Elmer Corporation,
Minnesota, USA, 1992.
Fig. 7. Friedel–Crafts acylation of anisole with benzoyl chloride in
dichloromethane.
[24] Z. Jia, Y. Tang, L. Luo, B. Li, Cryst. Growth Des. 8 (2008) 2116.
[25] K.X. Yao, R. Sinclair, H.C. Zeng, J. Phys. Chem. C 111 (2007) 2032.
[26] Q. Wu, X. Chen, P. Zhang, Y. Han, X. Chen, Y. Yan, S. Li, Cryst. Growth Des. 8
(2008) 3010.
Table 1
Comparison of catalytic efficiency (% yield) of commercial, solvothermally derived
hollow spheres and regenerated ZnO.
[27] S.K.N. Ayudhya, P. Tonto, O. Mekasuwandumrong, V. Pavarajarn, P.
Praserthdam, Cryst. Growth Des. 6 (2006) 2446.
[28] J. Joo, S.G. Kwon, J.H. Yu, T. Hyeon, Adv. Mater. 17 (2005) 1873.
[29] C. Wu, Y. Xie, L. Lei, S. Hu, C.Q. Yong, Adv. Mater. 18 (2006) 1727.
[30] M. Tsuji, M. Hashimoto, Y. Nishizawa, M. Kubakawa, T. Tsuji, Chem. Eur. J. 11
(2005) 440.
[31] Y.F. Zhu, D.H. Fan, W.Z. Shen, J. Phys. Chem. C 111 (2007) 18629.
[32] Z. Chen, L. Gao, Cryst. Growth Des. 8 (2008) 460.
[33] J. Zhang, L. Sun, J. Yin, H. Su, C. Liao, C. Yan, Chem. Mater. 14 (2002) 4172.
[34] S. Ashoka, G. Nagaraju, C.N. Tharamani, G.T. Chandrappa, Mater. Lett. 63 (2009)
873.
[35] M. Kadota, Jpn. J. Appl. Phys. Part 1 36 (1997) 3076.
[36] T.C. Damen, S.P.S. Porto, B. Tell, Phys. Rev. 142 (1966) 570.
[37] A. Kaschner, U. Haboeck, M. Strassbureg, G. Kaczmarczky, A. Hoffmann, C.
Thomsen, A. Zeuner, H.R. Alves, D.M. Hoffmann, B.K. Meyer, Appl. Phys. Lett. 80
(2002) 1909.
Catalyst
Reaction time
(min)
% of yield
–
20
20
20
20 min
0
Commercial ZnO
ZnO hollow spheres
Regenerated ZnO hollow spheres
41
98
95
high catalytic activity is due to the existence of a large number of
active sites such as Lewis acid and oxygen deficiency in nanocrys-
talline ZnO as compared to the commercial ZnO powder [42].
[38] C. Bundesmann, N. Ashkenov, M. Schubert, D. Spemann, T. Butz, E.M.
Kaidashev, et al., Appl. Phys. Lett. 82 (2003) 2260.
[39] (a) A. Olah, Friedel–Crafts and Related Reactions, vols. 1-4, Wiley-Interscience,
New York, London, 1963–1964.;
5. Conclusion
Hollow structured ZnO with building units of nanoparticles and
nanorods can be constructed via a solvothermal method without
(b) G.A. Olah, G.K.S. Prakash, J. Sommer, Superacids, Wiley-Interscience,
Brisbane, Toronto, 1985.