G Model
CCLET 3433 1–5
4
W. Zhang, Z.-G. Xie / Chinese Chemical Letters xxx (2015) xxx–xxx
Fig. 4. TGA (a) and storage modulus and loss modulus as a function of time (b) of SG-1.
[9] R. Bleta, S. Menuel, B. Le´ger, et al., Evidence for the existence of crosslinked
crystalline domains within cyclodextrin-based supramolecular hydrogels
through sol–gel replication, RSC Adv. 4 (2014) 8200–8208.
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
210
211
212
213
214
215
applicability of the SG-1 catalysts in Suzuki coupling reaction was
demonstrated in Fig. S6 in supporting information. 2-Phenylpyr-
idine and 1,3,5-triphenylbenzene was obtained after running silica
column with isolated yield of 9% and 8% in 2 h, respectively. These
results illustrate the generality of Pd nanoparticles in catalyzing
organic transformations.
ˇ
´
[10] M. Cametti, Z. Dzolic, New frontiers in hybrid materials: noble metal nanopar-
ticles–supramolecular gel systems, Chem. Commun. 50 (2014) 8273–8286.
[11] J.R. Hiscock, I.L. Kirby, J. Herniman, et al., Supramolecular gels for the remediation
of reactive organophosphorus compounds, RSC Adv. 4 (2014) 45517–45521.
[12] S.J. James, A. Perrin, C.D. Jones, D.S. Yufit, J.W. Steed, Highly interlocked anion-
bridged supramolecular networks from interrupted imidazole-urea gels, Chem.
Commun. 50 (2014) 12851–12854.
[13] S.H. Jung, K.Y. Kim, D.K. Woo, S.S. Lee, J.H. Jung, Tb3+ triggered luminescence in a
supramolecular gel and its use as a fluorescent chemoprobe for proteins contain-
ing alanine, Chem. Commun. 50 (2014) 13107–13110.
[14] Y. Liang, L.M. Tang, Y. Xia, et al., One-pot synthesis of network supported catalyst
using supramolecular gel as template, Chin. Chem. Lett. 21 (2010) 991–994.
[15] Q. Lin, B. Sun, Q.P. Yang, et al., A novel strategy for the design of smart supramo-
lecular gels: controlling stimuli-response properties through competitive coor-
dination of two different metal ions, Chem. Commun. 50 (2014) 10669–10671.
[16] S.H. Park, S.H. Jung, J. Ahn, et al., Reversibly tunable helix inversion in supramo-
lecular gels trigged by Co2+, Chem. Commun. 50 (2014) 13495–13498.
[17] M. Rodrigues, A.C. Calpena, D.B. Amabilino, M.L. Gardun˜o-Ramı´rez, L. Pe´rez-
216
4. Conclusion
217
218
219
220
221
222
223
224
In summary, two-component supramolecular gels were pre-
pared by using tetrazolyl derivatives and Pd(OAc)2 by the metal
coordination and hydrogen bonding interactions. The Pd nano-
particles obtained during the formation of SG-1 were shown to be
highly active and recyclable heterogeneous catalysts toward
hydrogenation of nitrobenzene. This work highlights the potential
of using gelation as an in situ method for developing metal
nanoparticles with catalytic activity.
´
Garcıa, Supramolecular gels based on a Gemini imidazolium amphiphile as
molecular material for drug delivery, J. Phys. Chem. B 2 (2014) 5419–5429.
[18] L.M. Tang, Y.J. Wang, Highly stable supramolecular hydrogels formed from 1, 3,5-
benzenetricarboxylic acid and hydroxyl pyridines,, Chin. Chem. Lett. 20 (2009)
1259–1262.
[19] D. Xia, M. Xue, A supramolecular polymer gel with dual-responsiveness con-
structed by crown ether based molecular recognition, Polym. Chem. 5 (2014)
5591–5597.
[20] P. Xing, X. Chu, M. Ma, S. Li, A. Hao, Supramolecular gel from folic acid with
multiple responsiveness, rapid self-recovery and orthogonal self-assemblies,
Phys. Chem. Chem. Phys. 16 (2014) 8346–8359.
[21] D. Yang, C. Liu, L. Zhang, M. Liu, Visualized discrimination of ATP from ADP
and AMP through collapse of supramolecular gels, Chem. Commun. 50 (2014)
12688–12690.
[22] L. Latxague, M.A. Ramin, A. Appavoo, et al., Control of stem-cell behavior by fine
tuning the supramolecular assemblies of low-molecular-weight gelators, Angew.
Chem. Int. Ed. 54 (2015) 4517–4521.
[23] L. Li, H. Zhao, J. Wang, R. Wang, Facile fabrication of ultrafine palladium nano-
particles with size-and location-control in click-based porous organic polymers,
ACS Nano 8 (2014) 5352–5364.
[24] W. Zhang, G. Lu, C. Cui, et al., A family of metal–organic frameworks exhibiting
size-selective catalysis with encapsulated noble-metal nanoparticles, Adv. Mater.
26 (2014) 4056–4060.
[25] H.L. Jiang, T. Akita, T. Ishida, M. Haruta, Q. Xu, Synergistic catalysis of Au@ Ag
core–shell nanoparticles stabilized on metal–organic framework, J. Am. Chem.
Soc. 133 (2011) 1304–1306.
[26] G. Lu, S. Li, Z. Guo, et al., Imparting functionality to a metal–organic framework
material by controlled nanoparticle encapsulation, Nat. Chem. 4 (2012) 310–316.
[27] Y. Huang, Z. Zheng, T. Liu, et al., Palladium nanoparticles supported on amino
functionalized metal-organic frameworks as highly active catalysts for the
Suzuki–Miyaura cross-coupling reaction, Catal. Commun. 14 (2011) 27–31.
[28] C. Kang, L. Wang, Z. Bian, et al., Supramolecular hydrogels derived from cyclic
amino acids and their applications in the synthesis of Pt and Ir nanocrystals,
Chem. Commun. 50 (2014) 13979–13982.
[29] L. Yan, G. Li, Z. Ye, F. Tian, S. Zhang, Dual-responsive two-component supramo-
lecular gels for self-healing materials and oil spill recovery, Chem. Commun. 50
(2014) 14839–14842.
[30] L. Yan, S. Gou, Z. Ye, S. Zhang, L. Ma, Self-healing and moldable material with the
deformation recovery ability from self-assembled supramolecular metallogels,
Chem. Commun. 50 (2014) 12847–12850.
225
Acknowledgment
226 Q2
227
This work was supported by the National Natural Science
Foundation of China (No. 91227118).
228
Appendix A. Supplementary data
229
230
Supplementary data associated with this article can be found, in
231
References
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
[1] C.B. Aakero¨y, P.D. Chopade, C. Ganser, J. Desper, Facile synthesis and supramo-
lecular chemistry of hydrogen bond/halogen bond-driven multi-tasking tectons,
Chem. Commun. 47 (2011) 4688–4690.
[2] N.P. Deifel, C.L. Cahill, Combining coordination and supramolecular chemistry
for the formation of uranyl-organic hybrid materials, Chem. Commun. 47 (2011)
6114–6116.
[3] P.A. Gale, J.L. Sessler, J.W. Steed, Supramolecular chemistry—introducing the latest
web themed issue, Chem. Commun. 47 (2011) 5931–5932.
[4] N. Lanigan, X. Wang, Supramolecular chemistry of metal complexes in solution,
Chem. Commun. 49 (2013) 8133–8144.
[5] J.W. Steed, Supramolecular gel chemistry: developments over the last decade,
Chem. Commun. 47 (2011) 1379–1383.
[6] L. Wang, L.L. Li, H.L. Ma, H. Wang, Recent advances in biocompatible supramo-
lecular assemblies for biomolecular detection and delivery, Chin. Chem. Lett. 24
(2013) 351–358.
[7] Y. Wang, S. Fabris, T.W. White, et al., Varying molecular interactions by
coverage in supramolecular surface chemistry, Chem. Commun. 48 (2012)
534–536.
[8] C.H. Wong, S.C. Zimmerman, Orthogonality in organic, polymer, and supramolec-
ular chemistry: from Merrifield to click chemistry,, Chem. Commun. 49 (2013)
1679–1695.
[31] Y. Li, W. Zhang, Z. Sun, et al., Light-induced synthesis of cross-linked polymers and
their application in explosive detection, Eur. Polym. J. 63 (2015) 149–155.
Please cite this article in press as: W. Zhang, Z.-G. Xie, Fabrication of palladium nanoparticles as effective catalysts by using