10.1002/cssc.201903243
ChemSusChem
FULL PAPER
[22] G. Kwon, S. Lee, J. Hwang, H. S. Shim, B. Lee, M. H. Lee, Y. Ko,
S. K. Jung, K. Ku, J. Hong, K. Kang, Joule, 2018, 2, 1771.
[23] G. Dai, X. Wang, Y. Qian, Z. Niu, X. Zhu, J. Ye, Y. Zhao, X. Zhang,
Energy Storage Mater. 2019, 16, 236.
[24] Z. Niu, H. Wu, L. Liu, G. Dai, S. Xiong, Y. Zhao, X. Zhang, J. Mater.
Chem. A, 2019, 7, 10581.
820, 730, 617, 555. Elemental Anal. Found: C, 79.96; H, 4.69;
Br, 0.54; Cl, 0.67.
Synthesis of Poly(TAA-PZ):
[25] K. Xu, Chem. Reviews, 2004, 104, 4303.
[26] A. Z. Weber, M. M. Mench, J. P. Meyers, P. N. Ross, J. T. Gostick,
Q. Lui, J. Appl. Electrochem. 2011, 41, 1137.
[27] J. F. Le Nest, S. Callens, A. Gandini, M. Armand, Electrochim.
Acta, 1992, 37, 1585.
[28] O. Garcia-Calvo, N. Lago, S. Devaraj, M. Armand, Electrochim.
Acta, 2016, 220, 587.
[29] F. Barrios-Lnderos, B. P. Carrow, J. F. Hartwig, J. Am. Chem. Soc.
2009, 131, 8141.
[30] B. P. Fors, S. L. Buchwald, J. Am. Chem. Soc. 2009, 131, 12898.
[31] Peng, G.-H. Ning, J. Su, G. Zhong, W. Tang, B. Tian, C. Su, D. Yu,
L. Zu, J. Yang, Nat. Energy, 2017, 2, 17074.
The general procedure for Buchwald-Hartwig cross-coupling
polymerization was followed using 5,10-dihydrophenazine (273
mg, 1.50 mmol, 1 equiv), tris(4-bromophenyl)amine (482 mg, 1.0
mmol, 0.67 equiv), RuPhos ligand (14 mg, 0.03 mmol, 0.02
equiv), RuPhos Pd G2 precatalyst (23 mg, 0.03 mmol, 0.02
equiv), and NaOtBu (346 mg, 3.6 mmol, 2.4 equiv). The polymer
(414 mg) was obtained as a brown powder. IR (ATR, cm–1):
3028, 1606, 1497, 1479, 1456, 1310, 1282, 1256, 1158, 1099,
1060, 1013, 822, 817, 732, 616, 553. Elemental Anal. Found: C,
76.83; H, 4.59; Br, 1.49.
[32] Castillo-Martínez, J. Carretero-González, M. Armand, Angew.
Chem. Int. Ed. 2014, 53, 5341.
[33] G. P. Evans, in Advances in Electrochemical Science and
Engineering, (Eds: H. Gerischer and C. Tobias), VCH Publishers
Inc., 1990, pp. 3-8.
[34] X. Wang, H. Hao, J. Liu, T. Huang, A. Yu, Electrochim. Acta, 2011,
56, 4065.
[35] S. B. Tang, M. O. Lai, L. Lu, Mater. Chem. Phys. 2008, 111, 149.
[36] S. Yang, X. Wang, X. Yang, Y. Bai, Z. Liu, H. Shu, Q. Wei,
Electrochim. Acta, 2012, 66, 88.
[37] Y. Cui, X. Zhao, R. Guo, Electrochim. Acta, 2010, 55, 922.
[38] H. Kim, J. Hong, Y. U. Park, J. Kim, I. Hwang, K. Kang, Adv. Funct.
Mater. 2015, 25, 534.
[39] G. Yan, D. Alves-Dalla-Corte, W. Yin, N. Madern, G. Gachot, J.-M.
Tarascon, J. Electrochem. Soc. 2018, 165, A1222.
[40] A. Sugimoto, T. Kotani, J. Tsugimoto, S. Yoneda, J. Heterocycl.
Chem., 1989, 26, 435.
[41] J. C. Theriot, C.-H. Lim, H. Yang, M. D. Ryan, C. B. Musgrave, G.
M. Miyake, Science, 2016, 352, 1082.
Acknowledgements
This work was primarily funded by a grant to the Cornell Center
for Materials Research from the NSF MRSEC program (DMR-
1719875).
Keywords: electrochemistry • cross-coupling • nitrogen
heterocycle • organic cathode • phenazine
[1] D. Howell et. al., Enabling Fast Charging: A Technology Gap
September, 2019.
[2] C. Schütter, S. Pohlmann, A. Balducci, Adv. Energy Mater., 2019, 9,
1900334.
[3] R. Tian, S. H. Park, P. J. King, G. Cunningham, J. Coelho, V.
Nicolosi, J. N. Coleman, Nat. Commun., 2019, 10, 1933.
[4] M. Yao, K. Kuratani, T. Kojima, N. Takeichi, H. Senoh, T.
Kiyobayashi, Sci. Rep. 2014, 4, 3650.
[5] M. Armand, Solid State Ion., 1983, 9, 745.
[6] D. R. Nevers, F. R. Brushett, D. R. Wheeler, Jour. of Power Sources,
2017, 352, 226.
[7] B. Haeupler, A. Wild, U. S. Schubert, Adv. Energy Mater., 2015, 5,
1402034.
[8] A. M. Bryan, L. M. Santino, Y. Lu, S. Acharya, J. M. D’Arcy, Chem.
Mater., 2016, 28, 5989.
[9] Y. Ma, J. Ma, G. Cui, Energy Storage Mater. 2018, 20, 146.
[10] S. J. Tan, X. X. Zeng, Q. Ma, X. W. Wu, Y. G. Guo, Electrochem.
Energy Rev. 2018, 1, 113.
[11] P. T. Dirlam, R. S. Glass, K. Char, J. Pyun, J. Polym. Sci. A, 2017,
55, 1635.
[12] S. Muench, A. Wild, C. Friebe, B. Hꢀupler, T. Janoschka, U. S.
Schubert, Chem. Rev., 2016, 116, 9438.
[13] J. Lopez, D. G, Mackanic, Y. Cui, Z. Bao, Nat. Rev. Mater., 2019, 4,
312.
[14] B. M. Peterson, D. Ren, L. Shen, Y.-C. M. Wu, B. Ulgut, G. W.
Coates, H. D. Abruña, B. P. Fors, ACS Appl. Energy Mater. 2018, 1,
3560.
[15] M. Lee, J. Hong, B. Lee, K. Ku, S. Lee, C. B. Park, K. Kang, Green
Chem. 2017, 19, 2980.
[16] S.-Y. Yang, Y.-J. Chen, G. Zhou, Z.-W. Fu, J. Electrochem. Soc.
2018, 165, A1422.
[17] J. Wang, K. Tee, Y. Lee, S. N Riduan, Y. Zhang, J. Mater. Chem. A
2018, 6, 2752.
[18] T. Matsunaga, T. Kubota, T. Sugimoto, M. Satoh, Chem. Lett. 2011,
40, 750.
[19] Hollas, X. Wei, V. Murugesan, Z. Nie, B. Li, D. Reed, J. Liu, V.
Sprenkle, W. Wang, Nat. Energy 2018, 3, 508.
[20] Peng, G.-H. Ning, J. Su, G. Zhong, W. Tang, B. Tian, C. Su, D. Yu,
L. Zu, J. Yang, Nat. Energy 2017, 2, 17074.
[21] J. Wang, C. S. Chen, Y. Zhang, ACS Sustain. Chem. Eng. 2017, 6,
1772.
This article is protected by copyright. All rights reserved.