Please do not adjust margins
Dalton Transactions
Page 4 of 6
DOI: 10.1039/C7DT03099A
COMMUNICATION
Journal Name
In conclusion, calculations corroborate experimental evidences
on the existence of Ni(I)/Ni(II) catalytic cycle involving a
dinuclear Ni(I) intermediate as the active species.
4. (a) R. H. Crabtree, Coord. Chem. Rev., 2013, 257, 755
Aldeco-Perez, A. J. Rosenthal, B. Donnadieu, P. Parameswaran,
G. Frenking and G. Bertrand, Science, 2009, 326, 556 559; (c) P.
‒
766; (b) E.
‒
Moreover, the suitability of C2-arylated imidazolium salts
in the synthesis of aNHC-complexes has been demonstrated
with copper complexes 22 and 23 (Scheme 5). The molecular
structure of 23 determined by X-ray diffraction studies is also
L. Arnold and S. Pearson, Coord. Chem. Rev., 2007, 251, 596
609.
‒
5. (a) T. Droge and F. Glorius, Angew. Chem. Int. Ed., 2010, 49,
6940 6952; (b) D. J. Nelson and S. P. Nolan, Chem. Soc. Rev.,
2013, 42, 6723 6753.
6. (a) S. Grundemann, A. Kovacevic, M. Albrecht, J. W. Faller and R.
H. Crabtree, Chem. Commun., 2001, 2274 2275; (b) O.
Schuster, L. Yang, H. G. Raubenheimer and M. Albrecht, Chem.
Rev., 2009, 109, 3445 3478; (c) M. Albrecht, Chem. Commun.,
2008, 3601 3610.
7. K. Goossens, S. Wellens, K. Van Hecke, L. Van Meervelt, T.
‒
‒
Ar
‒
N
+ CuBr
R
+ K{N(SiMe3)2}
‒
3b 3j
or
N
Cu
‒
Ar
: R = 4ꢀMeꢀC6H4
23: R = 4ꢀMe2NꢀC6H4
Br
(Ar = 2,6ꢀiPr2C6H3)
22
Cardinaels and K. Binnemans, Chem. Eur. J., 2011, 17, 4291
4306.
‒
Scheme 5 Synthesis of aNHC-copper complexes 22 and 23. Solid-state molecular
structure of 23
8. (a) A. G. Wright, T. Weissbach and S. Holdcroft, Angew. Chem.
Int. Ed., 2016, 55, 4818 4821; (b) K. M. Hugar, H. A. Kostalik
and G. W. Coates, J. Am. Chem. Soc., 2015, 137, 8730 8737.
9. (a) R. S. Ghadwal, S. O. Reichmann and R. Herbst-Irmer, Chem.
Eur. J., 2015, 21, 4247 4251; (b) S. Li, J. Tang, Y. Zhao, R. Jiang,
.
‒
shown in Scheme 5. The elongation of both N2‒C3 (1.409(3) Å)
and C2‒C3 (1.371(3) Å) bond lengths and the decrease of the
N2‒C3‒C2 (102.9º) bond angle of 23 are fully consistent9a, 21
with the carbene nature of the C3 carbon atom.
‒
‒
T. Wang, G. Gao and J. You, Chem. Commun., 2017, 53, 3489
3492.
‒
In summary, we have demonstrated the direct C2-arylation
of NHCs with different aryl electrophiles using nickel catalysis.
Studies suggest that the dinuclear Ni(I) species [(NHC)Ni(µ-
Br)]2 react with aryl halides to form Ni(II) compounds, which
undergo reductive elimination to deliver the coupling
products. The suitability of C2-arylated imidazolium salts in the
synthesis of aNHC complexes has been demonstrated with the
10. (a) L. Ackermann, R. Vicente and A. R. Kapdi, Angew. Chem. Int.
Ed., 2009, 48, 9792 9826; (b) J. Wencel-Delord and F. Glorius,
Nat. Chem., 2013, 5, 369 375; (c) D. Alberico, M. E. Scott and
M. Lautens, Chem. Rev., 2007, 107, 174 238.
11. H.-Q. Do, R. M. K. Khan and O. Daugulis, J. Am. Chem. Soc.,
2008, 130, 15185 15192.
‒
‒
‒
‒
copper complexes 22 and 23. Building on the above-described 12. (a) A. Gomez-Suarez, D. J. Nelson and S. P. Nolan, Chem.
findings, the preparation of C2-arylated imidazolium salts in
Commun., 2017, 53, 2650
Cavell, B. W. Skelton and A. H. White, Organometallics, 1999,
18, 1596 1605.
13. N. D. Clement and K. J. Cavell, Angew. Chem. Int. Ed., 2004, 43,
3845 3847.
14. (a) V. Ritleng, M. Henrion and M. J. Chetcuti, ACS Catal., 2016, 6,
890 906; (b) L.-J. Gu, C. Jin and H.-T. Zhang, Chem. Eur. J., 2015,
21, 8741 8744; (c) M. Henrion, V. Ritleng and M. J. Chetcuti,
ACS Catal., 2015, 5, 1283 1302.
15. (a) S. Z. Tasker, E. A. Standley and T. F. Jamison, Nature, 2014,
509, 299 309; (b) R. H. Crabtree, Chem. Rev., 2015, 115, 127
150; (c) T. Zell, P. Fischer, D. Schmidt and U. Radius,
Organometallics, 2012, 31, 5065 5073.
16. S. Miyazaki, Y. Koga, T. Matsumoto and K. Matsubara, Chem.
Commun., 2010, 46, 1932 1934.
17. B. R. Dible, M. S. Sigman and A. M. Arif, Inorg. Chem., 2005, 44,
3774 3776.
‒
2660; (b) D. S. McGuinness, K. J.
biorenewable as unconventional reaction media (e.g. Deep
Eutectic Solvents, DESs)22 as well as their employment as
potential ILs for organic synthesis and organometallic
transformations appear to be goals of worth pursuing.
‒
‒
We gratefully acknowledge the support from the Deutsche
Forschungsgemeinschaft (GH 129/4-1). We thank Fundação de
Amparo à Pesquisa do Estado de São Paulo for financial
support. The authors are grateful to Professor Norbert W.
Mitzel for his generous support and encouragement.
‒
‒
‒
‒
‒
Notes and references
‒
1. (a) F. E. Hahn and M. C. Jahnke, Angew. Chem. Int. Ed., 2008, 47,
‒
3122
Chem. Rev., 2015, 293–294, 48
Richter, M. Schedler and F. Glorius, Nature, 2014, 510, 485
496; (d) S. Diez-Gonzalez, N. Marion and S. P. Nolan, Chem. Rev.,
2009, 109, 3612 3676.
2. (a) D. J. Nelson, Eur. J. Inorg. Chem., 2015, 2012
Benhamou, E. Chardon, G. Lavigne, S. Bellemin-Laponnaz and V.
Cesar, Chem. Rev., 2011, 111, 2705 2733.
3. (a) T. Welton, Chem. Rev., 1999, 99, 2071
‒3172; (b) F. Lazreg, F. Nahra and C. S. J. Cazin, Coord.
‒79; (c) M. N. Hopkinson, C.
‒
‒
18. J. Wu, A. Nova, D. Balcells, G. W. Brudvig, W. Dai, L. M. Guard,
N. Hazari, P. H. Lin, R. Pokhrel and M. K. Takase, Chem. Eur. J.,
‒
2014, 20, 5327 5337.
‒
‒2027; (b) L.
19. C. A. Laskowski, D. J. Bungum, S. M. Baldwin, S. A. Del Ciello, V.
M. Iluc and G. L. Hillhouse, J. Am. Chem. Soc., 2013, 135,
‒
18272 18275.
‒
‒2084; (b) N. V.
20. K. Matsubara, H. Yamamoto, S. Miyazaki, T. Inatomi, K. Nonaka,
Y. Koga, Y. Yamada, L. F. Veiros and K. Kirchner,
Organometallics, 2017, 36, 255‒265.
Plechkova and K. R. Seddon, Chem. Soc. Rev., 2008, 37, 123
‒
‒
150; (c) R. Giernoth, Angew. Chem. Int. Ed., 2010, 49, 5608
5609.
4 | J. Name., 2012, 00, 1-3
This journal is © The Royal Society of Chemistry 20xx
Please do not adjust margins