Letters
Journal of Medicinal Chemistry, 2008, Vol. 51, No. 13 3695
renal plasma flow, urine flow, urinary excretion of sodium and
potassium, or plasma electrolytes. While blood pressure and
ECG intervals were unaffected in this assay, increased heart
rate and minor behavioral changes (panting) were observed.
Peak plasma concentrations of (S)-5 were 34.5 ( 11.0 µM
during the experiment.
In conclusion, we identified (S)-5, a potent and selective
T-type calcium channel antagonist, starting from 1,4-disubsti-
tuted piperidine HTS leads. The introduction of a fluorine atom
at the 4-position served to improve the ancillary pharmacological
profile and to enhance metabolic stability. Robust efficacy was
seen in WAG/Rij epilepsy and harmaline-induced tremor models
at plasma levels well below the no effect level seen in
cardiovascular dog experiments. This suggests a good margin
between CNS and peripheral effects of selective T-type calcium
channel antagonists. Compounds such as (S)-5 hold promise
for the treatment of a diverse set of neurological indications
without adversely affecting cardiovascular function.
(6) Mullins, M. E.; Horowitz, B. Z.; Linden, D. H. J.; Smith, G. W.;
Norton, R. L.; Stump, J. Life-threatening interaction of mibefradil and
ꢀ
-blockers with dihydropyridine calcium channel blockers. JAMA,
J. Am. Med. Assoc. 1998, 280, 157–158.
(7) Coulter, D. A.; Huguenard, J. R.; Prince, D. A. Characterization of
ethosuximide reduction of low-threshold calcium current in thalamic
neurons. Ann. Neurol. 1989, 25, 589–593.
(
8) See Supporting Information for references to recent work on T-type
calcium channel inhibitors.
(
9) (a) See Supporting Information for assay details. (b) Xie, X.; Van
Deusen, A. L.; Vitko, I.; Babu, D. A.; Davies, L. A.; Huynh, N.;
Cheng, H.; Yang, N.; Barrett, P. Q.; Perez-Reyes, E. Validation of
high throughput screening assays against three subtypes of Ca 3 T-type
v
channels using molecular and pharmacologic approaches. Assay Drug
DeV. Technol. 2007, 5, 191–203.
(
10) (a) Carmeliet, E; Mubagwa, K. Antiarrhythmic drugs and cardiac ion
channels: mechanisms of action. Prog. Biophys. Mol. Biol. 1998, 70,
1–72. (b) Triggle, D. J. Calcium-channel antagonists: mechanisms of
action, vascular selectivities, and clinical relevance. CleVeland Clin.
J. Med. 1992, 59, 617–627.
(
(
(
11) Raab, C. E.; Butcher, J. W.; Connolly, T. M.; Karczewski, J.; Yu,
N. X.; Staskiewicz, S. J.; Liverton, N.; Dean, D. C.; Melillo, D. G.
Synthesis of the first sulfur-35-labeled hERG radioligand. Bioorg. Med.
Chem. Lett. 2006, 16, 1692–1695.
12) Schoemaker, H.; Hicks, P. E.; Langer, S. Z. Calcium channel receptor
binding studies for diltiazem and its major metabolites: functional
correlation to inhibition of portal vein myogenic activity. J. Cardio-
Vasc. Pharmacol. 1987, 9, 173–180.
13) van Niel, M. B.; Collins, I.; Beer, M. S.; Broughton, H. B.; Cheng,
S. K. F.; Goodacre, S. C.; Heald, A.; Locker, K. L.; MacLeod, A. M.;
Morrison, D.; Moyes, C. R.; O’Connor, D.; Pike, A.; Rowley, M.;
Russell, M. G. N.; Sohal, B.; Stanton, J. A.; Thomas, S.; Verrier, H.;
Watt, A. P.; Castro, J. L. Fluorination of 3-(3-(piperidin-1-yl)propy-
l)indoles and 3-(3-(piperazin-1-yl)indoles gives selective human
Acknowledgment. We thank Carl F. Homnick, David D.
Wisnoski, Wei Lemaire, Scott D. Mosser, Rodney A. Bednar,
Charles W. Ross, III, Joan S. Murphy, Kevin B. Albertson,
William H. Leister, Ray T. McClain, Anna Dudkina, Emily
Wang, Debra McLoughlin, and Susan Garson for technical
support of this work.
Supporting Information Available: Spectral and analytical data
for new compounds, a scheme detailing the preparation of 5, FLIPR
assay protocol, Na 1.5 electrophysiology measurements, dog renal
v
function assay protocol, and expanded references. This material is
available free of charge via the Internet at http://pubs.acs.org.
5
-HT1D receptor ligands with improved pharmacokinetic profiles.
J. Med. Chem. 1999, 42, 2087–2104.
(
14) 6-Aza-6-tert-butyloxycabonyl-1-oxaspiro[2.5]octane (6) was prepared
from 1-tert-butyloxycarbonyl-4-piperidone and trimethyl sulfoxonium
iodide: Corey, E. J.; Chaykovsky, M. Methylenecyclohexane Oxide.
Organic Syntheses; Wiley: New York, 1973; Collect. Vol. V, 1973;
pp 755-757.
References
(
15) Sattler, A.; Haufe, G. High regioselectivity in the alternative cleavage
of terminal epoxides with different sources of nucleophilic fluoride.
J. Fluorine Chem. 1994, 69, 185–190.
16) See Supporting Information for an alternative synthesis of 8.
17) Preparation of 2,2-dimethyltetrahydropyran-4-one: (a) Liljebris, C.;
Martinsson, J.; Tedenborg, L.; Williams, M.; Barker, E.; Duffy, J. E. S.;
Nygren, A.; James, S. Synthesis and biological activity of a novel
class of pyridazine analogues as non-competitive reversible inhibitors
of protein tyrosine phosphatase 1B (PTP1B). Bioorg. Med. Chem.
(
1) Tsien, R. W.; Wheeler, D. B. Voltage-Gated Calcium Channels. In
Calcium as a Cellular Regulator; Carafoli, E., Klee, C., Eds.; Oxford
University Press: New York, 1999; pp 171-199.
(
(
(
2) (a) Ertel, E. A.; Campbell, K. P.; Harpold, M. M.; Hofmann, F.; Mori,
Y.; Perez-Reyes, E.; Schwartz, A.; Snutch, T. P.; Tanabe, T.;
Birnbaumer, L.; Tsien, R. W.; Catterall, W. A. Nomenclature of
voltage-gated calcium channels. Neuron 2000, 25, 533–535. (b) Perez-
Reyes, E. Molecular physiology of low-voltage-activated T-type
calcium channels. Physiol. ReV. 2003, 83, 117–161.
2
002, 10, 3197–3212. (b) 2,2-Dimethyltetrahydropyran-4-one was
2
+
converted to 12 by Wittig homologation with (methoxymethyl)triph-
enylphosphonium chloride and hydrolysis of the resulting methyl enol
ether with formic acid.
(
3) (a) Connolly, T. M.; Barrow, J. C. Drugs Active at T-Type Ca
Channels. In Voltage-Gated Ion Channels as Drug Targets; Triggle,
D. J., Gopalakrishnan, M., Rampe, D., Zheng, W., Eds.; Methods and
Principles in Medicinal Chemistry, Vol. 29; Wiley-VCH: Weinheim,
Germany, 2006; pp 84-99. (b) Ertel, E. A. Pharmacology of Cav3
(
(
18) See Supporting Information for the method of absolute configuration
determination.
19) Coenen, A. M. L.; Drinkenburg, W. H. I. M.; Inoue, M.; van Luijtelaar,
E. L. J. M. Genetic models of absence epilepsy, with emphasis on the
WAG/Rij strain of rats. Epilepsy Res. 1992, 12, 75–86.
20) Tr o¨ ster, A. I.; Woods, S. P.; Fields, J. A.; Lyons, K. E.; Pahwa, R.;
Higginson, C. I. Neuropsychological deficits in essential tremor: an
expression of cerebello-thalamo-cortical pathophysiology? Eur. J. Neu-
rol 2002, 9, 143–151.
21) Miwa, H. Rodent models of tremor. Cerebellum 2007, 6, 66–72.
22) MDS Pharma Services, Assay 473500. http://www.mdsps.com/.
23) See Supporting Information for Nav1.5 electrophysiology measure-
ments.
24) Dai, G.; Haedo, R. J.; Warren, V. A.; Ratliff, K. S.; Bugianesi, R. M.;
Rush, A.; Williams, M. E.; Herrington, J.; Smith, M. M.; McManus,
O. B.; Swensen, A. M. A high-throughput assay for evaluating state-
dependence and subtype selectivity of Cav2 calcium channel inhibitors.
Assay Drug DeV. Technol. 2008, 6, 195-212.
(
T-Type) Channels. In Calcium Channel Pharmacology; McDonough,
S. I., Ed.; Kluwer Academic/Plenum Publishers: New York, 2003; pp
83-236. (c) McGivern, J. G. Pharmacology and drug discovery for
T-type calcium channels. CNS Neurol Disord. Drug Targets 2006, 5,
87–603. (d) Shin, H.-S.; Cheong, E.-J.; Choi, S.; Lee, J.; Na, H. S.
1
(
5
2
+
T-Type Ca channels as therapeutic targets in the nervous system.
Curr. Opin. Pharmacol. 2008, 8, 33–41.
(
(
(
(
4) (a) Llin a´ s, R. R.; Ribary, U.; Jeanmonod, D.; Kronberg, E.; Mitra,
P. P. Thalamocortical dysrhythmia: a neurological and neuropsychiatric
syndrome characterized by magnetoencephalography. Proc. Natl. Acad.
Sci. U.S.A. 1999, 96, 15222–15227. (b) Deleuze, C.; Huguenard, J. R.
Distinct electrical and chemical connectivity maps in the thalamic
reticular nucleus: potential roles in synchronization and sensation.
J. Neurosci. 2006, 26, 8633–8645. (c) Contreras, D. The role of
T-channels in the generation of thalamocortical rhythms. CNS Neurol.
Disord. Drug Targets 2006, 5, 571–585. (d) Steriade, M.; McCormick,
D. A.; Sejnowski, T. J. Thalamocortical oscillations in the sleeping
and aroused brain. Science 1993, 262, 679–685.
(
(
25) Stump, G. L.; Smith, G. R.; Tebben, A. J.; Jahansouz, H.; Salata, J. J.;
Selnick, H. G.; Claremon, D. A.; Lynch, J. J. In vivo canine cardiac
electrophysiologic profile of 1,4-benzodiazepene IKs blockers. J. Car-
dioVasc. Pharmacol. 2003, 42, 105–112.
(
5) (a) Clozel, J.-P.; Ertel, S. I.; Ertel, E. A. Discovery and main
pharmacological properties of mibefradil (Ro 40-5967), the first
selective T-type calcium channel blocker. J. Hypertens. 1997, 15, S17–
S25. (b) Oparil, S. Mibefradil, a T-channel-selective calcium channel
antagonist. Clinical trials in hypertension. Am. J. Hypertens. 1998,
(
26) Hayashi, K.; Wakino, S.; Sugano, N.; Ozawa, Y.; Homma, K.; Saruta,
2+
T. Ca channel subtypes and pharmacology in the kidney. Circ. Res.
2
007, 100, 342–353.
(
27) See Supporting Information for assay details.
11, 88S–94S. (c) Massie, B. M. Mibefradil: a selective T-type calcium
antagonist. Am. J. Cardiol. 1997, 80, 23I–32I.
JM800419W