Published on Web 09/11/2007
Cobalt-Catalyzed Reductive Coupling of Activated Alkenes
with Alkynes
Hong-Tai Chang, Thiruvellore Thatai Jayanth, Chun-Chih Wang, and
Chien-Hong Cheng*
Contribution from the Department of Chemistry, National Tsing Hua UniVersity,
Hsinchu 30013, Taiwan
Abstract: Cobalt complex/Zn systems effectively catalyze the reductive coupling of activated alkenes with
alkynes in the presence of water to give substituted alkenes with very high regio- and stereoselectivity in
excellent yields. While the intermolecular reaction of acrylates, acrylonitriles, and vinyl sulfones with alkynes
takes place in the presence of CoI
2 3 2
(PPh ) /Zn, the reaction of enones and enals with alkynes requires the
use of the CoI (dppe)/Zn/ZnI system. The intramolecular reductive coupling of activated alkenes (enones,
2
2
enals, acrylates, and acrylonitriles) with alkynes also works efficiently. Further a variety of cyclic lactones
and lactams were prepared using this methodology. Possible mechanistic pathways are proposed based
on a deuterium-labeling experiment carried out in the presence of D O.
2
6
Introduction
hydropalladation of alkenes is also known. Krische has reported
related reductive couplings of alkynes with carbonyl compounds
or imines under hydrogenation conditions using rhodium as a
Catalytic reactions that effect carbon-carbon bond formation
by uniting readily available π-components in a highly atom-
economical way is very important to the development of organic
7
catalyst. The efficacy of these types of reaction leading to
highly substituted alkenes heavily depends on the selectivity
that can be achieved.
1
synthesis. Among these the coupling of alkynes and a double
bonded component leading to highly substituted alkenes is
particularly interesting. The Alder-ene reaction of alkynes with
alkenes catalyzed by ruthenium to form dienes has been
extensively studied by Trost’s group. Another variant involves
2
Cobalt also has been employed as highly reactive catalysts
for the carbon-carbon bond forming reaction by Oshima,
8a-c
3
8d,e
8f,g
8h-j
Knochel,
Gosmini,
our group
and others. In this
catalytic reductive couplings. Most widely studied in this type
is the nickel-catalyzed reductive coupling of alkynes with
carbonyl compounds or imines leading to allylic alcohols or
context, we have earlier reported a cobalt-catalyzed intermo-
lecular reductive coupling of alkynes and conjugated alkenes
in a highly chemo-, regio-, and stereoselective fashion. To the
9
4
amines. Nickel-catalyzed reductive coupling of alkynes and
alkenes involving an organometallic reagent as a third compo-
nent is known, but simple reductive couplings are unknown.
Coupling of alkenes and alkynes via palladium-catalyzed
(
5) For very recent examples, see: (a) Ho, C.-Y.; Jamison, T. F. Angew. Chem.,
Int. Ed. 2007, 46, 782. (b) Ng, S.-S.; Ho, C.-Y.; Jamison, T. F. J. Am.
Chem. Soc. 2006, 128, 11513. (b) Song, M.; Montgomery, J. Tetrahedron
2005, 61, 11440. (c) Ng, S.-S.; Jamison, T. F. Tetrahedron 2005, 61, 11405.
5
(
d) Takimoto, M.; Kajima, Y.; Sato, Y.; Mori, M. J. Org. Chem. 2005, 70,
(
1) (a) Trost, B. M. Science 1991, 254, 1471. (b) Trost, B. M. Angew. Chem.,
Int. Ed. Engl. 1995, 34, 259. (c) Trost, B. M. Acc. Chem. Res. 2002, 35,
8605. (e) Ng, S.-S.; Jamison, T. F. J. Am. Chem. Soc. 2005, 127, 7320. (f)
Hratchian, H. P.; Chowdhury, S. K.; Gutierrez-Garcia, V. M.; Amarasinghe,
K. K. D.; Heeg, M. J.; Schlegel, H. B.; Montgomery, J. Organometallics
2004, 23, 4636. (g) Kimura, M.; Ezoe, A.; Mori, M.; Tamaru, Y. J. Am.
Chem. Soc. 2005, 127, 201. (h) Shirakawa, E.; Yamamoto, Y.; Nakao, Y.;
Oda, S.; Tsuchimoto, T.; Hiyama, T. Angew. Chem., Int. Ed. 2004, 43,
3448. For earlier references, see ref 2c. See also: (i) Yi, C. S.; Lee, D.
W.; Chen, Y. Organometallics 1999, 18, 2043. (j) Ikeda, S.; Yamamoto,
H.; Kondo, K.; Sato, Y. Organometallics 1995, 14, 5015. (k) Ikeda, S.;
Cui, D. M.; Sato, Y. J. Am. Chem. Soc. 1999, 121, 4712.
6
95. (c) Wender, P. A.; Bi, F. C.; Gamber, G. G.; Gosselin, F.; Hubbard,
R. D.; Scanio, M. J. C.; Sun, R.; Williams, T. J.; Zhang, L. Pure Appl.
Chem. 2002, 74, 25. (d) Wender, P. A.; Handy, S. T.; Wright, D. L. Chem.
Ind. (London) 1997, 765. (e) Wender, P. A.; Miller, B. L. In Organic
Synthesis: Theory and Applications; Huldicky, T., Ed.; JAI Press:
Greenwich, 1993; Vol. 2, p 27.
(
2) (a) Trost, B. M.; Toste, F. D.; Pinkerton, A. B. Chem. ReV. 2000, 101,
2
067. (b) Ikeda, S.-I. Angew. Chem., Int. Ed. 2003, 42, 5120. (c)
Montgomery, J. Angew. Chem., Int. Ed. 2004, 43, 3890. (d) Tang, X. Q.;
Montgomery, J. J. Am. Chem. Soc. 1999, 121, 6098. (e) Huang, W.-S.;
Chen, J.; Jamison, T. F. Org. Lett. 2000, 2, 4221. (f) Colby, E. A.; Jamison,
T. F. J. Org. Chem. 2003, 68, 156. (g) Miller, K. M.; Huang, W.-S.;
Jamison, T. F. J. Am. Chem. Soc. 2003, 125, 3442. (h) Takai, K.; Sakamoto,
S.; Isshiki, T. Org. Lett. 2003, 5, 653.
(6) (a) Zhao, L.; Lu, X. Org. Lett. 2002, 4, 3903. (b) Zhao, L.; Lu, X.; Xu, W.
J. Org. Chem. 2005, 70, 4059.
(7) (a) Jang, H.-Y.; Krische, M. J. Eur. J. Org. Chem. 2004, 19, 3953. (b)
Jang, H.-Y.; Krische, M. J. Acc. Chem. Res. 2004, 37, 653. (c) Komanduri,
V.; Krische, M. J. J. Am. Chem. Soc. 2006, 128, 16448.
(8) (a) Yorimitsu, H.; Oshima, K. Pure Appl. Chem. 2006, 78, 441. (b) Ohmiya,
H.; Wakabayashi, K.; Yorimitsu, H.; Oshima, K. Tetrahedron 2006, 62,
2207. (c) Shinokubo, H.; Oshima, K. Eur. J. Org. Chem. 2004, 10, 2081.
(d) Korn, T. J.; Schade, M. A.; Wirth, S.; Knochel, P. Org. Lett. 2006, 8,
725. (e) Korn, T. J.; Cahiez, G.; Knochel, P. Synlett 2003, 1892. (f)
Kazmierski, I.; Gosmini, C; Paris, J.-M; Perichon, J. Synlett 2006, 881. (g)
Amatore, M.; Gosmini, C.; Perichon, J. J. Org. Chem. 2006, 71, 6130. (h)
Chang, H.-T.; Jeganmohan, M.; Cheng, C.-H. Chem. Commun. 2005, 4955
(i) Chang, K.-J.; Rayabarapu, D. K.; Cheng, C.-H. J. Org. Chem. 2004,
69, 4781. (j) Chang, K.-J.; Rayabarapu, D. K; Cheng, C.-H. Org. Lett.
2003, 5, 3963.
(
3) (a) Trost, B. M.; Frederiksen, M. U.; Rudd, M. T. Angew. Chem., Int. Ed.
2
005, 44, 6630. (b) Trost, B. M.; Huang, X. Chem.sAsian J. 2006, 1,
69.
4
(
4) (a) Patel, S. J.; Jamison, T. F. Angew. Chem., Int. Ed. 2003, 42, 1364. (b)
Sato, Y.; Takimoto, M.; Hayashi, K.; Katsuhara, T.; Takagi, K.; Mori, M.
J. Am. Chem. Soc. 1994, 116, 9771. (c) Oblinger, E.; Montgomery, J. J.
Am. Chem. Soc. 1997, 119, 9065. (d) Kimura, M.; Ezoe, A.; Shibata, K.;
Tamaru, Y. J. Am. Chem. Soc. 1998, 120, 4033. (e) Montgomery, J. Acc.
Chem. Res. 2000, 33, 467. (f) Ikeda, S. Acc. Chem. Res. 2000, 33, 511. (g)
Ni, Y.; Amarasinghe, K. K. D.; Montgomery, J. Org. Lett. 2002, 4, 1743.
12032
9
J. AM. CHEM. SOC. 2007, 129, 12032-12041
10.1021/ja073604c CCC: $37.00 © 2007 American Chemical Society