The Monomethyl Ester of Carbonic Acid
FULL PAPER
isourea (200 mg, 0.8 mmol) was added to the solution. After one
hour at room temperature the H NMR signal (δ = 3.69 ppm) of
[5] K. N. West, C. Wheeler, J. P. McCarney, K. N. Griffith, D.
1
Bush, C. L. Liotta, C. A. Eckert, J. Phys. Chem. A 2001, 105,
3
947–3948.
dimethyl carbonate became evident. The solution was dried under
vacuum and the resulting solid suspended in diethyl ether. The
ether solution was filtered from the solid. The latter was shown to
be urea [CyHNC(O)NHCy]. DMC was isolated from the solution
by evaporating the solvent.
[
6] a) P. Ballinger, F. A. Long, J. Am. Chem. Soc. 1960, 82, 795–
7
98; b) J. Hine, M. Hine, J. Am. Chem. Soc. 1952, 74, 5266–
5271.
[
[
[
7] M. Aresta, A. Dibenedetto, C. Pastore, Inorg. Chem. 2003, 42,
256–3261.
8] M. T. Nguyen, T. K. Ha, J. Am. Chem. Soc. 1984, 106, 599–
02.
3
Computational Details: DFT calculations were carried out at the
B3LYP/6-311++G** level[ in order to obtain information about
the structures and relative energies of energy minima and transition
states relevant to the reactions investigated. The nature of the sta-
tionary points obtained from the geometry optimizations was veri-
fied by subsequent vibrational frequency analysis. Intrinsic Reac-
tion Coordinate (IRC) calculations were performed from the lo-
cated transition states in order to check whether these structures
indeed connect the appropriate minima on the proposed reaction
pathways. Most of the investigated reactions in the present work
involve charged species, therefore we estimated the solvation free-
6
23]
9] C. A. Wight, A. I. Boldyrev, J. Phys. Chem. 1995, 99, 12125–
12130.
[10] K. R. Liedl, S. Seku sˇ ak, E. Mayer, J. Am. Chem. Soc. 1997,
119, 3782–3784.
[
[
[
[
11] P. Ballone, B. Montanari, R. O. Jones, J. Chem. Phys. 2000,
12, 6571–6575.
1
12] M. Kunert, P. Wiegeleben, H. Gorls, E. Dinjus, Inorg. Chem.
Commun. 1998, 1, 131–133.
13] H. Sun, S. J. Mumby, J. R. Maple, A. T. Hagler, J. Phys. Chem.
1995, 99, 5873–5882.
14] Y. Takano, K. N. Houk, J. Chem. Theory Comput. 2005, 1, 70–
[24]
energies using a recent implementation of the Polarizable Con-
tinuum Model (PCM).[ In these calculations, the cavities of the
solute molecules were constructed using the atomic radii of the
77.
25]
[15] Y. Ono, Appl. Catal., A 1997, 155, 133–166.
[16] M. Aresta, A. Dibenedetto, E. Quaranta, Green Chem. 1999,
1, 237–242.
universal force field (UFF)[
26]
model with individual hydrogen
[
[
[
[
17] S. C. Stinson, Chem. Eng. News 2001, 79, 15–16.
spheres to be able to describe transition states for hydrogen-transfer
reactions. The dielectric constant was always chosen according to
the solvent used in the experiments (ε = 8.93 for CH Cl and 32.63
2 2
for methanol). The Gibbs free-energies calculated for the gas phase
and solvated models are denoted ∆Ggas and ∆Gsolv, respectively, in
the text, and include the thermal corrections as well. The aqueous
18] A. A. G. Shaikh, S. Sivaram, Chem. Rev. 1996, 96, 951–976.
19] M. A. Pacheco, C. L. Marshall, Energy Fuels 1997, 11, 2–29.
20] M. Aresta, A. Dibenedetto, E. Fracchiolla, P. Giannoccaro, I.
Pápai, C. Pastore, G. Schubert, J. Org. Chem. 2005, 70, 6177–
6186.
[21] E. Dabritz, Angew. Chem. Int. Ed. Engl. 1966, 5, 470–477.
[22] D. D. Perrin, W. L. F. Armarego, D. R. Perrin, Purification of
Laboratory Chemicals, Pergamon Press, Oxford, England,
pK
a 3
of CH OC(O)OH was estimated according to the procedure
[14]
described by Takano and Houk
and using the UAHF cavity
1986.
model in the PCM calculations to obtain the solvation free-ener-
gies. All these calculations were carried out using the Gaussian 03
[
23] a) A. D. Becke, J. Chem. Phys. 1993, 98, 5648–5652; b) C. Lee,
W. Yang, R. G. Parr, Phys. Rev. B 1988, 37, 785–789; c) P. J.
Stephens, F. J. Devlin, C. F. Chabalowski, M. J. Frisch, J. Phys.
Chem. 1994, 98, 11623–11627.
[
27]
software package.
Supporting Information (see the footnote on the first page of this
article): Cartesian coordinates and total energies of located struc-
tures.
[
[
[
[
24] M. Cossi, G. Scalmani, N. Rega, V. Barone, J. Chem. Phys.
2
002, 117, 43–54.
25] S. Miertus, E. Scrocco, J. Tomasi, Chem. Phys. 1981, 55, 117–
29.
1
26] A. K. Rappi, C. J. Casewit, K. S. Colwell, W. A. Goddard III,
W. M. Skid, J. Am. Chem. Soc. 1992, 114, 10024–10035.
27] Gaussian 03, Revision C.02, M. J. Frisch, G. W. Trucks, H. B.
Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, J. A.
Montgomery Jr.,T. Vreven, K. N. Kudin, J. C. Burant, J. M.
Millam, S. S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M.
Cossi, G. Scalmani, N. Rega, G. A. Petersson, H. Nakatsuji,
M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M.
Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene,
X. Li, J. E. Knox, H. P. Hratchian, J. B. Cross, C. Adamo, J.
Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Aus-
tin, R. Cammi, C. Pomelli, J. W. Ochterski, P. Y. Ayala, K. Mo-
rokuma, G. A. Voth, P. Salvador, J. J. Dannenberg, V. G.
Zakrzewski, S. Dapprich, A. D. Daniels, M. C. Strain, O.
Farkas, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B.
Foresman, J. V. Ortiz, Q. Cui, A G. Baboul, S. Clifford, J. Cios-
lowski, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Ko-
maromi, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham,
C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill,
B. Johnson, W. Chen, M. W. Wong, C. Gonzalez, and J. A. Po-
ple, Gaussian, Inc., Wallingford CT, 2004.
Acknowledgments
The Italian authors wish to thank the Ministry of Education, Uni-
versity and Research (COFIN grants MM03027791 and
2003039774) and the EU Project TOPCOMBI for financial sup-
port, and Dr. Paride Papadia for experimental assistance in NMR
studies. The Hungarian authors acknowledge the support of the
Hungarian Research Foundation (OTKA grants T037345 and
T034547).
[
1] M. Aresta, D. Ballivet-Tkatchenko, M. C. Bonnet, R. Faure,
H. Loiseleur, J. Am. Chem. Soc. 1985, 107, 2994–2995.
2] M. Aresta, D. Ballivet-Tkatchenko, D. Belli Dell’Amico, M. C.
Bonnet, D. Boschi, F. Calderazzo, R. Faure, L. Labella, F.
Marchetti, Chem. Commun. 2000, 1099–1100.
[
[
3] a) G. Gattow, W. Von Behrendt, Angew. Chem. Int. Ed. Engl.
1
972, 11, 534–535; b) G. Gattow, W. Von Behrendt, Z. Anorg.
Allg. Chem. 1973, 398, 198–206.
[4] M. H. Jamroz, J. C. Dobrowolski, J. E. Rode, M. A. Borowiak,
J. Mol. Struct. (Theochem) 2002, 618, 101–108.
Received: July 13, 2005
Published Online: January 12, 2006
Eur. J. Inorg. Chem. 2006, 908–913
© 2006 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
www.eurjic.org
913