Communication
ChemComm
This work was supported by the Distinguished Youth Foun-
dation of Jiangsu Province (BK20130045), the Fok Ying-Tong
Education Foundation (141069), the National High Technology
Research and Development Program of China (863 Program,
2013AA032003), the National Basic Research Program of China
(973 Program, 2013CB733504), and the Project of Priority
Academic Program Development of Jiangsu Higher Education
Institutions.
Notes and references
1
(a) S. Pradhan, J. K. Bartley, D. Bethell, A. F. Carley, M. Conte,
S. Golunski, M. P. House, R. L. Jenkins, R. Lloyd and G. J. Hutchings,
Nat. Chem., 2012, 4, 134; (b) F. A. Westerhaus, R. V. Jagadeesh,
G. Wienhofer, M. M. Pohl, J. Radnik, A. E. Surkus, J. Rabeah,
K. Junge, H. Junge, M. Nielsen, A. Bruckner and M. Beller, Nat.
Chem., 2013, 5, 537; (c) M. Cargnello, V. V. T. Doan-Nguyen,
T. R. Gordon, R. E. Diaz, E. A. Stach, R. J. Gorte, P. Fornasiero and
C. B. Murray, Science, 2013, 341, 771.
2
3
4
(a) G. Busca, Chem. Rev., 2010, 110, 2217; (b) P. D. Raytchev,
A. Bendjeriou, J. P. Dutasta, A. Martinez and V. Dufaud, Adv. Synth.
Catal., 2011, 353, 2067; (c) P. Puthiaraj and K. Pitchumani,
Chem. – Eur. J., 2014, 20, 8761.
(a) X. Jin, V. V. Balasubramanian, S. T. Selvan, D. P. Sawant,
M. A. Chari, G. Q. Lu and A. Vinu, Angew. Chem., Int. Ed., 2009,
48, 7884; (b) A. Corma, Chem. Rev., 1997, 97, 2373; (c) G. D. Yadav
and J. Y. Salunke, Catal. Today, 2013, 207, 180.
(a) Y. H. Deng, J. Wei, Z. K. Sun and D. Y. Zhao, Chem. Soc. Rev.,
3
Fig. 4 MS-monitored conversion of KNO supported on SBA-15 through
2
1
013, 42, 4054; (b) S. S. Kim, W. Z. Zhang and T. J. Pinnavaia, Science,
998, 282, 1302; (c) W. J. Jiang, Y. Yin, X. Q. Liu, X. Q. Yin, Y. Q. Shi
(
A) the conventional thermal method and (B) the redox strategy.
and L. B. Sun, J. Am. Chem. Soc., 2013, 135, 8137; (d) L.-B. Sun,
J.-R. Li, W. Lu, Z.-Y. Gu, Z. Luo and H.-C. Zhou, J. Am. Chem. Soc.,
2012, 134, 15923.
(a) S. Y. Chen, C. Y. Huang, T. Yokoi, C. Y. Tang, S. J. Huang,
J. J. Lee, J. C. C. Chan, T. Tatsumi and S. Cheng, J. Mater.
Chem., 2012, 22, 2233; (b) L. B. Sun, J. Shen, F. Lu, X. D. Liu,
L. Zhu and X. Q. Liu, Chem. Commun., 2014, 50, 11299;
(c) Y. D. Xia and R. Mokaya, Angew. Chem., Int. Ed., 2003, 42, 2639;
strategy is able to convert base precursor KNO at much lower
temperatures, and the conversion proceeds via a quite different
pathway. An in situ IR technique was employed to further
3
5
examine the redox mechanism. As presented in Fig. S14
À1
(
ESI†), the bands at 2963 and 2857 cm attributed to the
(
2
d) K. Sugino, N. Oya, N. Yoshie and M. Ogura, J. Am. Chem. Soc.,
011, 133, 20030.
C–H stretching vibration are caused by methanol adsorbed on
1
2
À1
the surface of the sample. The bands at 3490 and 1653 cm
assigned to H O appear and become intense gradually with the
6 (a) X. Y. Liu, L. B. Sun, F. Lu, X. D. Liu and X. Q. Liu, Chem.
Commun., 2013, 49, 8087; (b) R. Sundararaman and C. Song, Appl.
Catal., B, 2014, 148, 80; (c) L. B. Sun, J. Yang, J. H. Kou, F. N. Gu,
Y. Chun, Y. Wang, J. H. Zhu and Z. G. Zou, Angew. Chem., Int. Ed.,
2008, 47, 3418.
2
1
3
increase of time. A similar trend is also observed on the bands
at 2370 and 2310 cm , and the intensity increases with
prolonging time. Meanwhile, an opposite peak at 3745 cm
assigned to the Si–OH bending vibration is detected. That
means, the Si–OH on the sample was consumed in the redox
À1
of CO
2
À1
7 X. Y. Liu, L. B. Sun, F. Lu, T. T. Li and X. Q. Liu, J. Mater. Chem. A,
2013, 1, 1623.
1
4
8
9
L. B. Sun, F. N. Gu, Y. Chun, J. Yang, Y. Wang and J. H. Zhu, J. Phys.
Chem. C, 2008, 112, 4978.
(a) X.-Y. Liu, L.-B. Sun, X.-D. Liu, A.-G. Li, F. Lu and X.-Q. Liu, ACS
Appl. Mater. Interfaces, 2013, 5, 9823; (b) L. B. Sun, J. H. Kou,
Y. Chun, J. Yang, F. N. Gu, Y. Wang, J. H. Zhu and Z. G. Zou, Inorg.
Chem., 2008, 47, 4199; (c) L. B. Sun, Y. H. Sun, X. D. Liu, L. Zhu and
X. Q. Liu, Curr. Org. Chem., 2014, 18, 1296.
0 (a) M. Honda, A. Suzuki, B. Noorjahan, K.-i. Fujimoto, K. Suzuki and
K. Tomishige, Chem. Commun., 2009, 4596; (b) F. J. Liu, W. Li,
Q. Sun, L. F. Zhu, X. J. Meng, Y. H. Guo and F. S. Xiao, Chem-
SusChem, 2011, 4, 1059; (c) G. Stoica, S. Abello and J. Perez-Ramirez,
ChemSusChem, 2009, 2, 301; (d) A. F. Lee, J. A. Bennett, J. C. Manayil
and K. Wilson, Chem. Soc. Rev., 2014, 43, 7887.
process. On the basis of these results, it is clear that CO
and H O were produced from adsorbed methanol due to the
2
2
redox reaction. These results are in good agreement with that
from MS.
In summary, an unprecedented strategy was developed to
fabricate strong basicity on mesoporous silica by using the redox
1
3
interaction between a base precursor (KNO ) and a reducing
agent (methanol). By using the redox strategy, the complete
conversion of KNO
3
can be achieved at much lower temperatures 11 (a) T. T. Li, L. B. Sun, X. Y. Liu, Y. H. Sun, X. L. Song and X. Q. Liu,
Chem. Commun., 2012, 48, 6423; (b) Z.-Z. Yang, Y.-N. Zhao, L.-N. He,
as compared with the conventional thermal method. Work is in
progress to extend this facile redox strategy to the formation of
various functional oxides from their corresponding nitrate and
even acetate precursors, especially aiming to introduce the
functionality that is impossible or difficult to achieve through
conventional thermal methods.
J. Gao and Z.-S. Yin, Green Chem., 2012, 14, 519.
2 R. Ladera, E. Finocchio, S. Rojas, J. Fierro and M. Ojeda, Catal.
Today, 2012, 192, 136.
1
1
1
3 M. F. Baruch, J. Pander, J. L. White and A. B. Bocarsly, ACS Catal.,
2015, 5, 3148.
4 A. Bendjeriou-Sedjerari, J. D. Pelletier, E. Abou-Hamad, L. Emsley
and J.-M. Basset, Chem. Commun., 2012, 48, 3067.
Chem. Commun.
This journal is ©The Royal Society of Chemistry 2015