The Journal of Organic Chemistry
Article
(
6
(
27) Malatesta, V.; Ingold, K. U. J. Am. Chem. Soc. 1981, 103, 609−
14.
28) Chatgilialoglu, C.; Lunazzi, L.; Macciantelli, D.; Placucci, G. J.
Am. Chem. Soc. 1984, 106, 5252−5256.
29) Wang, R.; Liu, H.; Yue, L.; Zhang, X.-K.; Tan, Q.-Y.; Pan, R.-L.
Tetrahedron Lett. 2014, 55, 2233−2237.
30) Sun, M.; Zhang, T.; Bao, W. Tetrahedron Lett. 2014, 55, 893−
96.
31) (a) Sathish Kumar, G.; Arun Kumar, R.; Santhosh Kumar, P.;
Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega,
N.; Millam, N. J.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.;
Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.;
Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.;
Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.;
(
̈
Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, O.;
(
8
(
Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J. Gaussian 09,
Revision D.01; Gaussian, Inc., Wallingford, CT, 2009.
4
−1
(56) As an example, the rate constant k
= 3.9 × 10 M s−1 has
H
Veera Reddy, N.; Vijaya Kumar, K.; Lakshmi Kantam, M.; Prabhakar,
S.; Rajender Reddy, K. Chem. Commun. 2013, 49, 6686−6688.
b) Santhosh Kumar, P.; Sathish Kumar, G.; Arun Kumar, R.; Veera
Reddy, N.; Rajender Reddy, K. Eur. J. Org. Chem. 2013, 1218−1222.
(
been measured for HAT from tert-butylbenzene to the tert-butoxyl
8
radical.
(
(57) An increase in Lewis basicity is observed on going from DMF to
DEF, as measured by Gutmann’s donor numbers (DN), defined as the
32) (a) Li, D.; Liu, J.; Zhao, Q.; Wang, L. Chem. Commun. 2013, 49,
negative ΔH values for 1:1 adduct formation between SbCl
5
and
3
2
640−3642. (b) Zhang, X.; Wang, M.; Zhang, Y.; Wang, L. RSC Adv.
donor solvents in the noncoordinating solvent 1,2-dichloroethane. DN
−1
58
=
26.6 and 30.9 kcal mol for DMF and DEF, respectively.
58) Reichardt, C.; Welton, T. Solvents and Solvent Effects in Organic
Chemistry, 4th ed.; Wiley-VCH: Weinheim, Germany, 2010.
013, 3, 1311−1316. (c) He, T.; Li, H.; Li, P.; Wang, L. Chem.
(
Commun. 2011, 47, 8946−8948.
(
4
(
1
33) Wang, H.; Guo, L.-N.; Duan, X.-H. Org. Biomol. Chem. 2013, 11,
573−4576.
34) Li, X.; Li, B.; You, J.; Lan, J. Org. Biomol. Chem. 2013, 11, 1925−
928.
(
59) Reed, A. E.; Weinhold, F. J. Chem. Phys. 1985, 83, 1736−1740.
(60) Reis, A. K. C. A.; Rittner, R. Spectrochim. Acta, Part A 2007, 66,
6
(
81−685.
61) Vokkaliga, S.; Jeong, J.; LaCourse, W. R.; Kalivretenos, A.
Tetrahedron Lett. 2011, 52, 2722−2724.
62) Clayden, J.; Watson, D. W.; Chambers, M. Tetrahedron 2005,
1, 3195−3203.
63) Pine, S. H.; Catto, B. A.; Yamagishi, F. G. J. Org. Chem. 1970,
5, 3663−3666.
64) Rao, Y.; Li, X.; Danishefsky, S. J. J. Am. Chem. Soc. 2009, 131,
2924−12926.
(
(
35) Ding, S.; Jiao, N. Angew. Chem., Int. Ed. 2012, 51, 9226−9237.
36) Yan, Y.; Zhang, Y.; Feng, C.; Zha, Z.; Wang, Z. Angew. Chem.,
(
6
(
3
(
1
Int. Ed. 2012, 51, 8077−8081.
(
(
37) Xia, Q.; Chen, W. J. Org. Chem. 2012, 77, 9366−9373.
38) Mai, W.-P.; Wang, H.-H.; Li, Z.-C.; Yuan, J.-W.; Xiao, Y.-M.;
Yang, L.-R.; Mao, P.; Qu, L.-B. Chem. Commun. 2012, 48, 10117−
0119.
39) Lao, Z.-Q.; Zhong, W.-H.; Lou, Q.-H.; Li, Z.-J.; Meng, X.-B. Org.
Biomol. Chem. 2012, 10, 7869−7871.
40) Barve, B. D.; Wu, Y.-C.; El-Shazly, M.; Chuang, D.-W.; Chung,
1
(
(
Y.-M.; Tsai, Y.-H.; Wu, S.-F.; Korinek, M.; Du, Y.-C.; Hsieh, C.-T.;
Wang, J.-J.; Chang, F.-R. Eur. J. Org. Chem. 2012, 6760−6766.
(
41) Salamone, M.; Milan, M.; DiLabio, G. A.; Bietti, M. J. Org.
Chem. 2013, 78, 5909−5917.
42) Salamone, M.; Martella, R.; Bietti, M. J. Org. Chem. 2012, 77,
556−8561.
43) Coniglio, A.; Galli, C.; Gentili, P.; Vadala,
009, 7, 155−160.
44) Iley, J.; Tolando, R.; Costantino, L. J. Chem. Soc., Perkin Trans. 2
001, 1299−1305.
45) Yoshimitsu, T.; Arano, Y.; Nagaoka, H. J. Am. Chem. Soc. 2005,
27, 11610−11611.
46) Angioni, S.; Ravelli, D.; Emma, D.; Dondi, D.; Fagnoni, M.;
Albini, A. Adv. Synth. Catal. 2008, 350, 2209−2214.
47) Formally, overlap of the C−H bond is with the amide π-system
rather than the nitrogen lone pair.
48) Avila, D. V.; Ingold, K. U.; Di Nardo, A. A.; Zerbetto, F.;
Zgierski, M. Z.; Lusztyk, J. J. Am. Chem. Soc. 1995, 117, 2711−2718.
49) Baciocchi, E.; Bietti, M.; Salamone, M.; Steenken, S. J. Org.
Chem. 2002, 67, 2266−2270.
50) Konya, K. G.; Paul, T.; Lin, S.; Lusztyk, J.; Ingold, K. U. J. Am.
(
8
(
̀
R. Org. Biomol. Chem.
2
(
2
(
1
(
(
(
(
(
Chem. Soc. 2000, 122, 7518−7527.
(
(
(
51) Becke, A. D. J. Chem. Phys. 1993, 98, 5648−5652.
52) Perdew, J. P. Phys. Rev. B 1986, 33, 8822−8824.
53) Johnson, E. R.; Clarkin, O. J.; DiLabio, G. A. J. Phys. Chem. A
2
(
003, 107, 9953−9963.
54) (a) Montgomery, J. A., Jr.; Frisch, M. J.; Ochterski, J. W.;
Petersson, G. A. J. Chem. Phys. 2000, 112, 6532−6542. (b) Mont-
gomery, J. A., Jr.; Frisch, M. J.; Ochterski, J. W.; Petersson, G. A. J.
Chem. Phys. 1999, 110, 2822−2827.
(
55) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.;
Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci,
B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H.
P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.;
Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima,
T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, J. A., Jr.;
Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin,
K. N.; Staroverov, V. N.; Kobayashi, R.; Normand, J.; Raghavachari, K.;
7
184
dx.doi.org/10.1021/jo5013459 | J. Org. Chem. 2014, 79, 7179−7184