Paper
Regarding phenyl-based additives, the significant reduction
NJC
8 Y. A. Valiullina, E. A. Ermakova, D. A. Faizullin, A. B.
Mirgorodskaya and Y. F. Zuev, Structure and catalytic activity
of a-chymotrypsin in solutions of gemini surfactants, Russ.
Chem. Bull., 2014, 63(1), 273–279.
9 G.-Y. Bai, J.-L. Liu, J.-X. Wang, Y.-J. Wang, Y.-N. Li, Y. Zhao
and M.-H. Yao, Enzymatic Superactivity and Conforma-
tional Change of a-CT Induced by Cationic Gemini Surfac-
tant, Acta Phys.-Chim. Sin., 2017, 33(5), 976–983.
in enzyme superactivity observed when a propane linker
replaced a methylene was due to an increase in K , and
M
molecular modelling studies suggested that these additives
partially occupy the substrate interaction region, hindering its
access to the active site. The hydrophobic interaction resulted
in being critical to improve superactivation, and this was
especially evident for the series of diammonium additives
bearing a rigid linker. Indeed, bisEDuEAB, which was designed, 10 T. Kurinomaru, T. Kameda and K. Shiraki, Effects of multi-
synthesized and tested in this study, is the most effective
ammonium additive studied so far. In addition, bisEDuEAB
contrasts the paradigm that bulky hydrophobic head groups are
valency and hydrophobicity of polyamines on enzyme
hyperactivation of a-chymotrypsin, J. Mol. Catal. B: Enzym.,
2015, 115, 135–139.
needed to increase the superactivation effect, since the overall 11 A. Endo, T. Kurinomaru and K. Shiraki, Hyperactivation of
hydrophobicity seems to play a role. The presence of hydro-
phobic substituents linked to the aromatic ring instead of to
a-chymotrypsin by the Hofmeister effect, J. Mol. Catal. B:
Enzym., 2016, 133, S432–S438.
the head group produced a more hydrophobic microenviron- 12 A. Endo, T. Kurinomaru and K. Shiraki, Hyperactivation of
ment with a consequent increase in the nucleophilicity of the
catalytic serine residue and also allowed an easier entry of the
serine proteases by the Hofmeister effect, Mol. Catal., 2018,
455, 32–37.
substrate into the active site (lower KM value than tributyl 13 A. Wangler, R. Canales, C. Held, T. Q. Luong, R. Winter,
additives). The amino acid W215 was confirmed to be a key
residue for interaction with superactivating additives. Finally,
kinetic parameters were interpreted for the first time also taking
into account the potential binding mode of the substrate.
D. H. Zaitsau, S. P. Verevkin and G. Sadowski, Co-solvent
effects on reaction rate and reaction equilibrium of an
enzymatic peptide hydrolysis, Phys. Chem. Chem. Phys.,
2018, 20(16), 11317–11326.
1
1
1
1
4 C. Held, T. Stolzke, M. Knierbein, M. W. Jaworek, T. Q.
Luong, R. Winter and G. Sadowski, Cosolvent and pressure
effects on enzyme-catalysed hydrolysis reactions, Biophys.
Chem., 2019, 252, 106209.
5 M. Knierbein, C. Held and G. Sadowski, The role of mole-
cular interactions on Michaelis constants of a-chymotrypsin
catalyzed peptide hydrolyses, J. Chem. Thermodyn., 2020,
Conflicts of interest
There are no conflicts of interest to declare.
Acknowledgements
148, 106142.
The authors acknowledge the financial support by the University
of Perugia (Fondo Ricerca di Base 2019).
6 N. Spreti, F. Alfani, M. Cantarella, F. D’Amico, R. Germani
and G. Savelli, a-Chymotrypsin superactivity in aqueous
solutions of cationic surfactants, J. Mol. Catal. B: Enzym.,
1999, 6(1-2), 99–110.
References
7 F. Alfani, M. Cantarella, N. Spreti, R. Germani and G. Savelli,
a-Chymotrypsin Superactivity in Cetyltrialkylammonium
Bromide-Rich Media, Appl. Biochem. Biotechnol., 2000,
88(1-3), 001–016.
1
D. G. Herries, Enzyme Structure and Mechanism (Second
Edition), Biochem. Educ., 1985, 13(3), 146.
2
3
D. M. Blow, The Structure of Chymotrypsin, 1971, 3, 185–2126.
G. P. Hess, in The Enzymes, ed. B. P. D., Academic Press, 18 N. Spreti, P. Di Profio, L. Marte, S. Bufali, L. Brinchi and
New York, 3rd edn, 1971, vol. 3, pp. 213–248.
S. K. Verma and K. K. Ghosh, Effect of cationic surfactants
G. Savelli, Activation and stabilization of a-chymotrypsin by
cationic additives, Eur. J. Biochem., 2001, 268(24), 6491–6497.
on the enzymatic activity of a-chymotrypsin, Kinet. Catal., 19 F. De Angelis, A. Di Tullio, P. Del Boccio, S. Reale, G. Savelli
4
5
2011, 52(1), 6–10.
and N. Spreti, ESI-MS in the study of the activity of
a-chymotrypsin in aqueous surfactant media, Org. Biomol.
Chem., 2003, 1(17), 3125–3130.
M. S. Celej, M. G. D’Andrea, P. T. Campana, G. D. Fidelio
and M. L. Bianconi, Superactivity and conformational
changes on alpha-chymotrypsin upon interfacial binding 20 N. Spreti, M. V. Mancini, R. Germani, P. Di Profio and
to cationic micelles, Biochem. J., 2004, 378(3), 1059–1066.
E. Abuin, E. Lissi and C. Calder o´ n, Kinetics of N-glutaryl-l-
phenylalanine p-nitroanilide hydrolysis catalyzed by a-chymo-
G. Savelli, Substrate effect on a-chymotrypsin activity in
aqueous solutions of ‘‘big-head’’ ammonium salts, J. Mol.
Catal. B: Enzym., 2008, 50(1), 1–6.
6
7
trypsin in aqueous solutions of alkyltrimethylammonium 21 L. De Matteis, F. Di Renzo, R. Germani, L. Goracci, N. Spreti
bromides, J. Colloid Interface Sci., 2007, 308(2), 573–576.
S. K. Verma, B. K. Ghritlahre, K. K. Ghosh, R. Verma,
S. Verma and X. Zhao, Influence of Amine-Based Cationic
and M. Tiecco, a-Chymotrypsin superactivity in quaternary
ammonium salt solution: kinetic and computational studies,
RSC Adv., 2016, 6(52), 46202–46211.
Gemini Surfactants on Catalytic Activity of a-Chymotrypsin, 22 J. Weinstock, Anomalous Hofmann Elimination Reactions,
Int. J. Chem. Kinet., 2016, 48(12), 779–784.
J. Org. Chem., 1956, 21, 540–542.
20832 | New J. Chem., 2020, 44, 20823--20833 This journal is ©The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2020