Journal of the American Chemical Society
COMMUNICATION
beneficial for the transportation and adsorption of large molecules
thus, promoting the catalytic process; (2) the ultrathin nanosheets
structures, which enable a maximized molecular diffusion and
make active sites exposed to reactants; (3) the synergic effect
between Lewis and Brønsted acid sites of titanates, which plays an
(c) Lou, X. W.; Archer, L. A.; Yang, Z. C. Adv. Mater. 2008, 20, 3987.
(d) Zhang, Q.; Wang, W. S.; Goebl, J.; Yin, Y. D. Nano Today 2009, 4, 494.
(2) (a) Liu, J.; Qiao, S. Z.; Hartono, S. B.; Lu, G. Q. Angew. Chem., Int.
Ed. 2010, 49, 4981. (b) Wu, X. J.; Xu, D. S. J. Am. Chem. Soc. 2009,
131, 2774.
13
(3) (a) Lee, J.; Park, J. C.; Song, H. Adv. Mater. 2008, 20, 1523. (b)
Arnal, P. M.; Comotti, M.; Schuth, F. Angew. Chem., Int. Ed. 2006,
important role in alkylation. To investigate the reusability, the
Fe O @titanate microspheres were easily recovered by a magnet
3
4
45, 8224. (c) Kim, M.; Sohn, K.; Bin Na, H.; Hyeon, T. Nano Lett. 2002,
2, 1383. (d) Kamata, K.; Lu, Y.; Xia, Y. N. J. Am. Chem. Soc. 2003,
125, 2384. (e) Tan, L. F.; Chen, D.; Liu, H. Y.; Tang, F. Q. Adv. Mater.
from the catalytic reaction solution. The catalyst exhibits a similar
catalytic performance without visible reduction even after running
for more than 8 cycles (Figure S12). Interestingly, the Fe O @-
3
4
2010, 22, 4885. (f) Chen, J. S.; Chen, C. P.; Liu, J.; Xu, R.; Qiao, S. Z.;
Lou, X. W. Chem. Commun. 2011, 2631.
titanate microspheres can be in situ converted to Fe O @NS-
3
4
(4) (a) Chen, Y.; Chen, H. R.; Guo, L. M.; He, Q. J.; Chen, F.; Zhou,
TiO microspheres with Fe O core and anatase TiO nanosheet
2
3
4
2
J.; Feng, J. W.; Shi, J. L. ACS Nano 2010, 4, 529. (b) Ikeda, S.; Ishino, S.;
Harada, T.; Okamoto, N.; Sakata, T.; Mori, H.; Kuwabata, S.; Torimoto,
T.; Matsumura, M. Angew. Chem., Int., Ed. 2006, 45, 7063. (c) Kim, J. Y.;
Yoon, S. B.; Yu, J. S. Chem. Commun. 2003, 790. (d) Kim, S. H.; Yin,
Y. D.; Alivisatos, A. P.; Somorjai, G. A.; Yates, J. T. J. Am. Chem. Soc.
2007, 129, 9510. (e) Van Gough, D.; Wolosiuk, A.; Braun, P. V. Nano
Lett. 2009, 9, 1994. (f) Zhang, T. R.; Ge, J. P.; Hu, Y. X.; Zhang, Q.;
Aloni, S.; Yin, Y. D. Angew. Chem., Int. Ed. 2008, 47, 5806.
shell through simple annealing (Figure S13a). The double-shelled
yolk-shell structure were well retained (Figure S13b). The
Fe O @NS-TiO microspheres show an excellent photocatlytic
3
4
2
À1
activity toward Rhodamine B with a rate constant of 0.072 min ,
À1
which is faster than that of P25 TiO (0.042 min , Figure S13c).
2
Because of the magnetic core, the catalysts can be easily recycled
and exhibit approximately constant activity even after 10 cycles
(
Figure S13d). The high porosity and ultrathin nanosheets struc-
(5) (a) Yin, Y. D.; Rioux, R. M.; Erdonmez, C. K.; Hughes, S.;
Somorjai, G. A.; Alivisatos, A. P. Science 2004, 304, 711. (b) Gao, J. H.;
Liang, G. L.; Zhang, B.; Kuang, Y.; Zhang, X. X.; Xu, B. J. Am. Chem. Soc.
14
tures of Fe O @NS-TiO microspheres offer more active sites,
which are responsible for the excellent performance.
3
4
2
2
007, 129, 1428.
6) Li, H. X.; Bian, Z. F.; Zhu, J.; Zhang, D. Q.; Li, G. S.; Huo, Y. N.;
Li, H.; Lu, Y. F. J. Am. Chem. Soc. 2007, 129, 8406.
7) (a) Liu, J.; Hartono, S. B.; Jin, Y. G.; Li, Z.; Lu, G. Q.; Qiao, S. Z.
In summary, we have demonstrated a facile “hydrothermal
(
etching assisted crystallization” strategy to synthesize Fe O @-
titanate yolk-shell microspheres with ultrathin nanosheets-as-
sembled double-shell structure. The obtained Fe O @titanate
3
4
(
3
4
J. Mater. Chem. 2010, 20, 4595. (b) Li, G. L.; Shi, Q.; Yuan, S. J.; Neoh,
K. G.; Kang, E. T.; Yang, X. L. Chem. Mater. 2010, 22, 1309.
microspheres possess a uniform size (∼ 560 nm), tailored shell
structure, good structural stability, versatile ion-exchange cap-
(8) (a) Lou, X. W.; Yuan, C. L.; Archer, L. A. Small 2007, 3, 261.
2
ability, highly surface area (150 m /g), large magnetization (17.7
(b) Lou, X. W.; Yuan, C. L.; Archer, L. A. Adv. Mater. 2007, 19, 3328.
(9) Wu, X. J.; Xu, D. S. Adv. Mater. 2010, 22, 1516.
(10) (a) Deng, Y.; Qi, D.; Deng, C.; Zhang, X.; Zhao, D. J. Am. Chem.
Soc. 2008, 130, 28. (b) Liu, J.; Sun, Z. K.; Deng, Y. H.; Zou, Y.; Li, C. Y.;
Guo, X. H.; Xiong, L. Q.; Gao, Y.; Li, F. Y.; Zhao, D. Y. Angew. Chem., Int.
Ed. 2009, 48, 5875.
emu/g), and enhanced acid catalysis performance for FriedelÀ
Crafts alkylation. The corresponding Fe O @NS-TiO deriva-
3
4
2
tives show excellent photocatalytic activeity. This facile synthesis
strategy can be easily extended to design other multifunctional
yolk-shell materials, such as Au@titanate, Fe O @ titanate and
2
3
(11) (a) Liu, J. H.; Chen, J. S.; Wei, X. F.; Lou, X. W.; Liu, X. W. Adv.
CNTs@titanate, and their correspongding titania derivatives.
Mater. 2011, 23, 998. (b) Yuan, Z. Y.; Zhou, W. Z.; Su, B. L. Chem.
Commun. 2002, 1202.
(12) (a) Bavykin, D. V.; Friedrich, J. M.; Walsh, F. C. Adv. Mater.
’
ASSOCIATED CONTENT
2
006, 18, 2807. (b) Bavykin, D. V.; Walsh, F. C. Eur. J. Inorg. Chem.
2009, 977.
(13) (a) Kitano, M.; Nakajima, K.; Kondo, J. N.; Hayashi, S.; Hara,
S
Supporting Information. Detailed experimental proce-
b
dures, characterization methods, SEM images, XRD data, EDX
data, N sorption results, TEM images and catalytic performance
measurements. This material is available free of charge via the
Internet at http://pubs.acs.org.
M. J. Am. Chem. Soc. 2010, 132, 6622. (b) Li, S. H.; Zheng, A. M.; Su,
Y. C.; Zhang, H. L.; Chen, L.; Yang, J.; Ye, C. H.; Deng, F. J. Am. Chem.
Soc. 2007, 129, 11161. (c) Lin, C. H.; Chien, S. H.; Chao, J. H.; Sheu,
C. Y.; Cheng, Y. C.; Huang, Y. J.; Tsai, C. H. Catal. Lett. 2002, 80, 153.
2
(
14) (a) Son, J. S.; Wen, X. D.; Joo, J.; Chae, J. S.; Baek, S.; Park, K.;
’
AUTHOR INFORMATION
Kim, J. H.; An, K. J.; Yu, J. H.; Kwon, S. G.; Choi, S. H.; Kuk, Y.;
Hoffmann, R.; Hyeon, T. Angew. Chem., Int. Ed. 2009, 48, 6861.
Corresponding Author
yhdeng@fudan.edu.cn; dyzhao@fudan.edu.cn
(b) Son, J. S.; Yu, J. H.; Kwon, S. G.; Lee, J.; Joo, J.; Hyeon, T. Adv.
Mater. 2011, 23, 3214.
’
ACKNOWLEDGMENT
We greatly appreciate financial support from the National
Science Foundation (20890123 and 21073040) and the State
Key Basic Research Program of China (2009AA033701 and
2
009CB930400) and Science & Technology Commission of
Shanghai Municipality (08DZ2270500) and Shanghai Leading
Academic Discipline Project (B108).
’
REFERENCES
(
1) (a) Caruso, F.; Caruso, R. A.; Mohwald, H. Science 1998,
82, 1111. (b) Vriezema, D. M.; Aragones, M. C.; Elemans, J.; Corne-
lissen, J.; Rowan, A. E.; Nolte, R. J. M. Chem. Rev. 2005, 105, 1445.
2
1
5833
dx.doi.org/10.1021/ja2055287 |J. Am. Chem. Soc. 2011, 133, 15830–15833