V. Vimalraj et al. / Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 101 (2013) 8–13
13
vier atoms. Taking into account that the range of 13C NMR chemical
References
shifts for a typical aromatic compound usually is >100 ppm [10,26]
[
1] V. Singh, B. Raju, S. Lan, J. Zhou, R.C. Gadwood, C.W. Ford, S. Lopez, C. Wu, W.J.
Adams, M. Coutrney, D.V. Patel, M.F. Gordeev, Bioorg. Med. Chem. Lett. 13
the accuracy ensures reliable interpretation of spectroscopic
parameters. In the present paper, 13C NMR chemical shifts the ring
(
2003) 4209–4212.
in the title compound are >100 ppm, as they would be expected (in
Table 3). The proton chemical shifts of H-2, H-3a and H-3e are
deshielded. Likewise, the 13C chemical shifts of C(3) and C(5) are
also deshielded. This is due to the presences of electro negative
[2] T.J. Brown, R.F. Chanan, D.C. Cook, T.W. Hart, I.M. McLay, R. Jorden, J.S. Masan,
M.N. Palfreyman, R.J. Walsh, M.T. Withnell, J. Med. Chem. 35 (1992) 3613–
3624.
[
3] G.A. Howie, P.E. Manni, J.M. Cassady, J. Med. Chem. 17 (1974) 840–843.
[4] N.S. Pantaleo, N. Satyamurthy, K. Ramarajan, D.J. O’Donnel, K.D. Berlin, D.V.D.
Helm, J. Org. Chem. 46 (1981) 4284–4290.
[5] (a) V. Monga, K.H. Thompron, V.G. Yuen, Sharma, B.O. Patrik, J.H. Mc Neill, C.
Orvig, Inorg. Chem. 44 (2005) 2678–2688;
oxygen and the electronic effects over carbon atoms in the ring.
1
As seen in Tables 2 and 3, the calculated chemical shifts for
H
are more sensitive to that of 13C. Isotropic 1H and C chemical
shifts of molecules calculated by means of B3LYP method are closer
to experimental data.
13
(
b) D. Pureta, J.R. Schemes, R.H. Henchman, A.J. Mc Cammon, S.M. Cohen,
Angew. Int. Ed. 42 (2003) 3772–3774.
[
[
[
6] D. Sajan, J. Binoy, B. Pradeep, K. Venkatakrishnan, V.B. Kartha, I.H. Joe, V.S.
Jayakumar, Spectrochim. Acta A 60 (2004) 173–180.
7] J.P. Abraham, I.H. Joe, V. George, O.F. Nielson, V.S. Jayakumar, Spectrochim.
Acta A 59 (2003) 193–199.
8] J. Binoy, J.P. Abraham, I.H. Joe, V.S. Jayakumar, J. Aubard, O.F. Nielson, J. Raman
Spectrosc. 36 (2005) 63–72.
5
. Conclusions
The synthesized compounds cis-2r,6c-distyryltetrahydro thio-
[9] M.J. Frisch et al., Gaussian 03, Revision B 4, Gaussian Inc., Pittsburgh PA, 2003.
[10] V. Vimalraj, S. Vijayalakshmi, S. Umayaparvathi, Akhil R. Krishnan,
Spectrochim. Acta A 78 (2011) 670–675.
pyran-4-one and its oxime (4 and 5) were characterized by IR,
NMR spectra and elemental analysis. All the spectral data support
and confirm the formation of the target compounds. Well-pro-
nounced oximination effect is Observed on thiopyran ring carbons
and the associated protons. The oximination effect is extended up
to ipso carbons. We have carried out DFT calculations on the struc-
ture of 4. The calculated 1H NMR and C NMR by B3LYP/6-
[
11] K. Pandiarajan, T.N. Jagadish, J.C.N. Benny, Indian J. Chem. B 36 (1967) 662–
67.
6
[12] K. Pandiarajan, R.T. Sapabathymohan, R. Gomathi, G. Muthukumaran, Magn.
Reson. Chem. 43 (2005) 430–434.
13] D. Devanathan, K. Pandiarajan, Spectrosc. Lett. 42 (2009) 147–155.
14] F. Arndt, P. Nachtwey, T. Pusch, J. Chem. Ber. 58B (1925) 1637–1639.
[15] V. Baliah, T. Chelladurai, Indian J. Chem. 9 (1971) 960.
16] V. Baliah, T. Chelladurai, Indian J. Chem. 9 (1971) 424.
17] I.E. El-Kholy, F.K. Rafla, Tetrahedron Lett. (1965) 1437–1440.
18] J.B. Lamert, D.A. Netzel, H.N. Sun, K.K. Lilianstorm, J. Am. Chem. Soc. 98 (1976).
[19] G.E. Hawker, K. Herwing, J.D. Roberts, J. Org. Chem. 39 (1974) 1017–1028.
20] G.C. Levy, G.L. Nelson, J. Am. Chem. Soc. 94 (1972) 4897–4901.
21] P. Geneste, R. Durand, J.M. Kamenka, H. Beierbeck, R. Martino, J.K. Saundes,
Can. J. Chem. 56 (1978) 1940–1946.
[
[
13
[
[
[
3
11++G(d,p) method were in good consistent with experimental
results. The assignments made at higher level of theory with higher
basis set with only reasonable deviations from the experimental
values, seemed to be correct. This study demonstrated that scaled
DFT/B3LYP calculations are powerful approach for understanding
the NMR spectra of medium sized organic compounds.
[
[
[22] P. Geneste, J.M. Kamenka, C. Brevard, Org. Magn. Reson. 10 (1977) 31–34.
23] R. Ditchfield, J. Chem. Phys. 56 (1972) 5688–5691.
24] K. Wolinski, J.F. Hinton, P. Pulay, J. Am. Chem. Soc. 112 (1990) 8251–8260.
25] L. Szabo, V. Chis, A. Pirnau, N. Leopold, O. Cozar, Sz. Orosz, J. Mol. Struct. 924
[
[
[
Acknowledgments
(
2009) 385–392.
The authors are thankful to SIF, Indian Institute of science, Ban-
galore for recording the NMR spectra.
[26] H.O. Kalinowski, S. Berger, S. Braun, Carbon-13 NMR Spectroscopy, John Wiley
and Sons Chichester, 1988.