This work was supported by a Grant-in-Aid for Scientific
Research (C) (No. 21550097) from the Japan Society for the
Promotion of Science.
Notes and references
1 T. Friscic
´
Synthesis: Toward
and L. R. MacGillivray, Template-controlled Solid-state
General Form of Covalent Capture in
a
Molecular Solids, in Frontiers in Crystal Engineering, ed. E. R. T.
Tiekink and J. J. Vittal, John Wiley & Sons Ltd, West Sussex,
2006, pp. 51–66.
2 For reviews, see: (a) L. R. MacGillivray, G. S. Papaefstathiou,
´
T. Friscic, T. D. Hamilton, D.-K. Bucar, Q. Chu, D. B. Varshney
and I. G. Georgiev, Acc. Chem. Res., 2008, 41, 280–291;
(b) J. J. Vittal, Chem. Commun., 2008, 5277–5288; (c) L. R.
MacGillivray, J. Org. Chem., 2008, 73, 3311–3317.
3 (a) Y. Ito, B. Borecka, J. Trotter and J. R. Scheffer, Tetrahedron
Lett., 1995, 36, 6083–6086; (b) Y. Ito, B. Borecka, G. Olovsson,
J. Trotter and J. R. Scheffer, Tetrahedron Lett., 1995, 36,
6087–6090; (c) Y. Ito, T. Kitada and M. Horiguchi, Tetrahedron,
2003, 59, 7323–7329; (d) T. Friscic and L. R. MacGillivray, Chem.
´
Commun., 2005, 5748–5750; (e) A. Natarajan, J. T. Mague,
K. Venkatesan and V. Ramamurthy, Org. Lett., 2005, 7,
1895–1898; (f) X. Mei, S. Liu and C. Wolf, Org. Lett., 2007, 9,
2729–2732; (g) C. Avendano and A. Briceno, CrystEngComm,
2009, 11, 408–411.
4 (a) L. R. MacGillivray, J. L. Reid and J. A. Ripmeester, J. Am.
Fig. 5 The PXRD patterns for (a) simulated 1aÁHClÁ2H2O and
(b) anhydrous 1aÁHCl, and the PXRD patterns (c) after exposure
of 1aÁHCl to H2O vapor for 24 h or (d) 48 h.
Chem. Soc., 2000, 122, 7817–7818; (b) T. Friscic
L. R. MacGillivray, Chem. Commun., 2003, 1306–1307;
(c) X. Gao, T. Friscic and L. R. MacGillivray, Angew. Chem.,
Int. Ed., 2004, 43, 232–236; (d) T. Friscic, D. M. Drab and
´
and
´
´
L. R. MacGillivray, Org. Lett., 2004, 6, 4647–4650;
(e) A. N. Sokolov, D.-K. Bucar, J. Baltrusaitis, S. X. Gu and
L. R. MacGillivray, Angew. Chem., Int. Ed., 2010, 49, 4273–4277.
5 (a) G. S. Papaefstathiou, A. J. Kipp and L. R. MacGillivray,
Chem. Commun., 2001, 2462–2463; (b) N. Shan and W. Jones,
Tetrahedron Lett., 2003, 44, 3687–3689; (c) M. Linares and
A. Briceno, New J. Chem., 2010, 34, 587–590.
6 D. B. Varshney, X. Gao, T. Friscic and L. R. MacGillivray,
´
Angew. Chem., Int. Ed., 2006, 45, 646–650.
7 B. R. Bhogala, B. Captain, A. Parthasarathy and V. Ramamurthy,
J. Am. Chem. Soc., 2010, 132, 13434–13442.
8 G. K. Kole, G. K. Tan and J. J. Vittal, Org. Lett., 2010, 12,
128–131.
Scheme 1 Irradiation of 1aÁHClÁ2H2O and 1bÁHClÁ3H2O obtained
from anhydrous 1aÁHCl and 1bÁHCl.
9 (a) J. C. Ma and D. A. Dougherty, Chem. Rev., 1997, 97,
1303–1324; (b) S. Yamada, Org. Biomol. Chem., 2007, 5,
2903–2912.
10 S. Yamada, N. Uematsu and K. Yamashita, J. Am. Chem. Soc.,
2007, 129, 12100–12101.
(Fig. 5d). This clearly shows that the anhydrous 1aÁHCl was
rehydrated to produce hydrous 1aÁHClÁ2H2O. These observations
strongly suggest that the water molecules assist the assembly
of the styrylpyridinium cation in a head-to-tail and face-
to-face manner in combination with cation–p interactions
between the pyridinium and phenyl groups. Similar reversibility
was also observed between 1bÁHCl and 1bÁHClÁ3H2O.w
It should be noted that irradiation of the rehydrated
1aÁHClÁ2H2O and 1bÁHClÁ3H2O, obtained from anhydrous
1aÁHCl and 1bÁHCl, also afforded synHT dimers 2a and 2b
in 89% and 97% yields, respectively, indicating their high
crystallinity (Scheme 1).
11 S. Yamada and Y. Tokugawa, J.Am. Chem. Soc., 2009, 131,
2098–2099.
12 Crystal data for 2b: C34H26N2, M = 462.59, monoclinic, space
group P21, a = 10.5616(6), b = 9.5453(6), c = 13.5147(7) A,
b = 110.173(2)1, V = 1278.89(12) A3, Z = 2, Dcalcd = 1.201 g cmÀ3
,
m = 0.5350 mmÀ1 (Cu-Ka, l = 1.54178 A), T = 293 K. R1 = 0.0761
and wR2 = 0.2912 for 4523 unique reflections 42s(I). CCDC
747473.
13 Crystal data for 4b: C34H26N2, M = 462.59, orthorhombic, space
group Pbca, a = 22.5434(4), b = 8.91677(10), c = 49.7495(10) A,
V = 10000.4(3) A3, Z = 12, Dcalcd = 0.922 g cmÀ3, m = 0.4105 mmÀ1
In summary, we have shown that water molecules play a key
role in assembling arylvinylpyridinium salts. The hydrogen
bond networks assist the assembly of molecules in an anti-
parallel orientation in combination with cation–p interactions.
As the water provides flexible hydrogen bond networks, and is
easily removable and environmentally friendly, water-assisted
assembly would be of considerable utility in solid-state photo-
dimerization reactions. Studies of the substituent effect on
assembly are in progress and will be reported in due course.
(Cu-Ka,
l = 1.54178 A), T = 293 K. R1 = 0.0648 and
wR2 = 0.2166 for 9132 unique reflections 4 2s(I). CCDC 747476.
14 J. Bernstein, R. E. Davis, L. Shimoni and N.-L. Chang, Angew.
Chem., Int. Ed. Engl., 1995, 34, 1555–1573.
15 G. M. J. Schmidt, Pure Appl. Chem., 1971, 27, 647–678.
16 Crystal data for 1bÁHClÁ3H2O: C17H20N1O3Cl1, M = 321.80,
%
triclinic, space group P1, a = 7.0419(7), b = 11.0864(11), c =
12.0768(12) A, a = 64.825(3)1, b = 81.258(3)1, g = 81.852(3)1,
V = 840.22(15) A3, Z = 2, Dcalcd = 1.272 g cmÀ , m = 2.1117 mmÀ1
3
Cu-Ka, l = 1.54178 A, T = 293 K. R1 = 0.0994 and wR2 = 0.2563
for 2727 unique reflections 42s(I). CCDC 818895.
c
This journal is The Royal Society of Chemistry 2011
Chem. Commun., 2011, 47, 9143–9145 9145