Page 13 of 13
Journal of the American Chemical Society
TOC
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
REFERENCES
1
(a) Li, J. R.; Kuppler, R. J.; Zhou, H. C. Selective Gas Adsorption And Separation In Metal-Organic Frameworks. Chem. Soc. Rev. 2009, 38 (5), 1477–1504. (b) Lee, J.; Farha, O. K.; Roberts, J.; Scheidt, K. A.; Nguyen, S. T.; Hupp, J. T. Metal-Organic Framework Materials As Catalysts. Chem. Soc. Rev. 2009, 38 (5), 1450–1459. (c) Ma, L.; Abney, C.; Lin, W. Enantioselective Catalysis With Homochiral Metal–Organic Frameworks. Chem. Soc. Rev. 2009, 38 (5), 1248. (d) Sumida, K.; Rogow, D. L.; Mason, J. A.; Mcdonald, T. M.; Bloch, E. D.; Herm, Z. R.; Bae, T.-H.; Long, J. R. Carbon Dioxide Capture In Metal–Organic Frameworks. Chem. Rev. 2012, 112 (2), 724–781. (e) Furukawa, H.; Cordova, K. E.; O’Keeffe, M.; Yaghi, O. M. The Chemistry And Applications Of Metal-Organic Frameworks. Science (80 ). 2013, 341 (6149), 1230444–1230444. (f) Zhang, Y.; Feng, X.; Yuan, S.; Zhou, J.; Wang, B. Challenges And Recent Advances In MOF–Polymer Composite Membranes For Gas Separation. Inorg. Chem. Front. 2016, 3 (7), 896–909. (g) Maurin, G.; Serre, C.; Cooper, A.; Férey, G. The New Age Of Mofs And Of Their Porous-Related Solids. Chem. Soc. Rev. 2017, 46 (11), 3104–3107. (h) Trickett, C. A.; Helal, A.;
Al-Maythalony, B. A.; Yamani, Z. H.; Cordova, K. E.; Yaghi, O. M. The Chemistry Of Metal–Organic Frameworks For CO2 Capture, Regeneration And Conversion. Nat. Rev. Mater. 2017, (8), 17045.
2
2
(a) Kojima, A.; Teshima, K.; Shirai, Y.; Miyasaka, T., Organometal Halide Perovskites as Visible-Light Sensitizers for Photovoltaic Cells. J. Am. Chem. Soc. 2009, 131 (17), 6050-6051. (b) Hao, F.; Stoumpos, C. C.; Cao, D. H.; Chang, R. P. H.; Kanatzidis, M. G., Lead-Free Solid-State Organic–Inorganic Halide Perovskite Solar Cells. Nat. Photonics 2014, 8, 489. (c) Zhao, Y.; Zhu, K., Organic-Inorganic Hybrid Lead Halide Perovskites for Optoelectronic and Electronic Applications. Chem. Soc. Rev. 2016, 45 (3), 655-689.
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
3
K. J. Am. Chem. Soc. 2015, 137 (50), 15699–15702. (f) Wang, L.; Han, Y.; Feng, X.; Zhou, J.; Qi, P.; Wang, B. Metal–Organic Frameworks For Energy Storage: Batteries And Supercapacitors. Coord. Chem. Rev. 2016, 307, 361–381. (g) Shi, C.; Xia, Q.; Xue, X.; Liu, Q.; Liu, H. J. Synthesis Of Cobalt-Based Layered Coordination Polymer Nanosheets And Their Application In Lithium-Ion Batteries As Anode Materials. RSC Adv. 2016,
(Hexaiminobenzene) (M Ni, Cu). J. Am. Chem. Soc. 2017, 139 (39), 13608–13611. (l) Sheberla, D.; Bachman, J. C.; Elias, J. S.; Sun, C.-J.; Shao-Horn, Y.; Dincă, M. Conductive MOF Electrodes For Stable Supercapacitors With High Areal Capacitance. Nat. Mater. 2017, 16 (2), 220–224. (m) Sun, L.; Liao, B.; Sheberla, D.; Kraemer, D.; Zhou, J.; Stach, E. A.; Zakharov, D.; Stavila, V.; Talin, A. A.; Ge, Y.; Et Al. Microporous And Naturally Nanostructured Thermoelectric Metal-Organic Framework With Ultralow Thermal Conductivity. Joule 2017,
Conductive Two-Dimensional Metal−Organic Frameworks With Exceptionally High Volumetric And Areal Capacitance. Nat. Energy 2018, (1), 30–36. (q) Ziebel, M. E.; Darago, L. E.; Long, J. R. Control Of Electronic Structure And Conductivity In Two-Dimensional Metal-Semiquinoid Frameworks Of Titanium, Vanadium, And Chromium. J. Am. Chem. Soc. 2018, 140 (8), 3040–3051. (r) Aubrey, M. L.; Wiers, B. M.; Andrews, S. C.; Sakurai, T.; Reyes-Lillo, S. E.; Hamed, S. M.; Yu, C.; Darago, L. E.; Mason, J. A.; Baeg, J.; Et Al. Electron Delocalization And Charge Mobility As
(a) Bhattacharya, B.; Layek, A.; Mehboob Alam, M.; Maity, D. K.; Chakrabarti, S.; Ray, P. P.; Ghoshal, D. Cd(II) Based Metal–Organic Framework Behaving As
A
Schottky Barrier Diode. Chem. Commun. 2014, 50 (58), 7858. (b) Sheberla, D.; Sun, L.; Blood-Forsythe, M. A; Er, S.; Wade, C. R.; Brozek, C. K.; Aspuru-Guzik, A.; Dincă, M. High Electrical Conductivity In Ni
3
(2,3,6,7,10,11-Hexaiminotriphenylene)
2
,
A
Semiconducting Metal–Organic Graphene Analogue. J. Am. Chem. Soc. 2014, 136 (25), 8859–8862. (c) Campbell, M. G.; Sheberla, D.; Liu, S. F.; Swager, T. M.; Dincă, M. Cu
(6), 4442–4447. (h) Liu, W.; Yin, X.-B. Metal–Organic Frameworks For Electrochemical Applications. Trac Trends Anal. Chem. 2016, 75, 86–96. (i) Jeon, I.-R.; Sun, L.; Negru, B.; Van Duyne, R. P.; Dincă, M.; Harris, T. D. Solid-State Redox Switching Of Magnetic Exchange And Electronic Conductivity In
(1), 168–177. (n) Wada, K.; Sakaushi, K.; Sasaki, S.; Nishihara, H. Multielectron-Transfer-Based Rechargeable Energy Storage Of Two-Dimensional Coordination Frameworks With Non-Innocent Ligands. Angew. Chemie Int. Ed. 2018, 57 (29), 8886–8890. (o) Park, J.; Lee, M.; Feng, D.; Huang, Z.; Hinckley, A. C.; Yakovenko, A.; Zou, X.; Cui, Y.; Bao, Z. Stabilization Of Hexaaminobenzene In A
Function Of Reduction In Metal–Organic Framework. Nat. Mater. 2018, 17 (7), 625–632. (s) Xie, L. S.; Sun, L.; Wan, R.; Park, S. S.; Degayner, J. A.; Hendon, C. H.; Dincă, M. Tunable Mixed-Valence Doping Toward Record Electrical Conductivity In Three-Dimensional Metal–Organic Framework. J. Am. Chem. Soc. 2018, 140 (24), 7411–7414.
3
(Hexaiminotriphenylene) 2ꢀ: An Electrically Conductive 2D Metal-Organic Framework For Chemiresistive Sensing. Angew. Chemie Int. Ed. 2015, 54 (14), 4349–4352. (d) Darago, L. E.; Aubrey, M. L.; Yu, C. J.; Gonzalez, M. I.; Long, J. R. Electronic Conductivity, Ferrimagnetic Ordering, And Reductive Insertion Mediated By Organic Mixed-Valence In Ferric Semiquinoid Metal–Organic Framework. J. Am. Chem. Soc. 2015, 137 (50), 15703–15711. (e) Jeon, I.-R.; Negru, B.; Van Duyne, R. P.; Harris, T. D. A 2D Semiquinone Radical-Containing Microporous Magnet With Solvent-Induced Switching From T C = 26 To 80
Benzoquinoid-Bridged Mn II Chain Compound. J. Am. Chem. Soc. 2016, 138 (20), 6583–6590. (j) Degayner, J. A.; Jeon, I. R.; Sun, L.; Dincă, M.; Harris, T. D. 2D Conductive Iron-Quinoid Magnets Ordering Up To Tc 105 Via Heterogenous Redox Chemistry. J. Am. Chem. Soc. 2017, 139 (11), 4175–4184. (k) Dou, J.-H.; Sun, L.; Ge, Y.; Li, W.; Hendon, C. H.; Li, J.; Gul, S.; Yano, J.; Stach, E. A.; Dincă, M. Signature Of Metallic Behavior In The Metal–Organic Frameworks M 3
2D Conductive Metal–Organic Framework For High Power Sodium Storage. J. Am. Chem. Soc. 2018, 140 (32), 10315–10323. (p) Feng, D.; Lei, T.; Lukatskaya, M. R.; Park, J.; Huang, Z.; Lee, M.; Shaw, L.; Chen, S.; Yakovenko, A. A.; Kulkarni, A.; Et Al. Robust And
A
6
A
=
K
2
=
A
1
3
A
A
A
4
(a) Sun, Y.; Sheng, P.; Di, C.; Jiao, F.; Xu, W.; Qiu, D.; Zhu, D. Organic Thermoelectric Materials And Devices Based On P- And N-Type Poly(Metal 1,1,2,2-Ethenetetrathiolate)S. Adv. Mater. 2012, 24 (7), 932–937. (b) Givaja, G.; Amo-Ochoa, P.; Gómez-García, C. J.; Zamora, F. Electrical Conductive Coordination Polymers. Chem. Soc. Rev. 2012, 41 (1), 115–147. (c) Sun, L.; Miyakai, T.; Seki, S.; Dincă, M. Mn 2 (2,5-Disulfhydrylbenzene-1,4-Dicarboxylate): A Microporous Metal–Organic Framework With Infinite (−Mn–S−) ∞ Chains And High Intrinsic Charge Mobility. J. Am. Chem. Soc. 2013, 135 (22), 8185–8188. (d) Sun, L.; Hendon, C. H.; Minier, M. A.; Walsh, A.; Dincă, M. Million-Fold Electrical Conductivity Enhancement In Fe 2 (DEBDC) Versus Mn 2 (DEBDC) (E = S, O). J. Am. Chem. Soc. 2015, 137 (19), 6164–6167. (e) Sun, Y.; Qiu, L.; Tang, L.; Geng, H.; Wang, H.; Zhang, F.; Huang, D.; Xu, W.; Yue, P.; Guan, Y. S.; Et Al. Flexible N-Type High-Performance Thermoelectric Thin Films Of Poly(Nickel-Ethylenetetrathiolate) Prepared By An Electrochemical Method. Adv. Mater. 2016, 28 (17), 3351–3358. (f) Electrically Conductive Porous Metal-Organic Frameworks. Angew. Chemie Int. Ed. 2016,
55 (11), 3566–3579.
5
(a) Rivera, N. M.; Engler, E. M.; Schumaker, R. R. Synthesis And Properties Of Tetrathiafulvalene–Metal Bisdithiolene Macromolecules. J. Chem. Soc., Chem. Commun. 1979, 4, 184–185. (b) Dirk, C. W.; Bousseau, M.; Barrett, P. H.; Moraes, F.; Wudl, F.; Heeger, A. J. Metal Poly(Benzodithiolenes). Macromolecules 1986, 19 (2), 266–269. (c) Vicente, R.; Ribas, J.; Cassoux, P.; Valade, L. Synthesis, Characterization And Properties Of Highly Conducting Organometallic Polymers Derived From The Ethylene Tetrathiolate Anion. Synth. Met. 1986, 13 (4), 265–280. (d) Szczepura, L. F.; Galloway, C. P.; Zheng, Y.; Han, P.; Wilson, S. R.; Rauchfuss, T. B.; Rheingold, A. L. C4S62−: A Bridging Bis(Dithiolato) Ligand For The Preparation Of Semiconducting Inorganic Polymers. Angew. Chemie Int. Ed. 1995, 34 (17), 1890–1892. (e) Cerrada, E.; Diaz, M. C.; Diaz, C.; Laguna, M.; Sabater, A. New Conducting Coordination Polymers Containing M(Dmit)2 Links. Synth. Met. 2001, 119 (1–3), 91–92. (f) Mitsumi, M.; Murase, T.; Kishida, H.; Yoshinari, T.; Ozawa, Y.; Toriumi, K.; Sonoyama, T.; Kitagawa, H.; Mitani, T. Metallic Behavior And Periodical Valence Ordering In A MMX Chain Compound, Pt2(Etcs2)4I. J. Am.
Chem. Soc. 2001, 123 (45), 11179–11192. (g) Kanehama, R.; Umemiya, M.; Iwahori, F.; Miyasaka, H.; Sugiura, K.; Yamashita, M.; Yokochi, Y.; Ito, H.; Kuroda, S.; Kishida, H.; Et Al. Novel ET-Coordinated Copper(i) Complexes: Syntheses, Structures, And Physical Properties (ET BEDT-TTF Bis(Ethylenedithio)Tetrathiafulvalene). Inorg. Chem. 2003, 42 (22), 7173–7181.
=
=
6
(a) Kambe, T.; Sakamoto, R.; Hoshiko, K.; Takada, K.; Miyachi, M.; Ryu, J. H.; Sasaki, S.; Kim, J.; Nakazato, K.; Takata, M.; Et Al.
A
Π-Conjugated Nickel Bis(Dithiolene) Complex Nanosheet. J. Am. Chem. Soc. 2013, 135 (7), 2462–2465. (b) Kambe, T.; Sakamoto, R.; Kusamoto, T.; Pal, T.; Fukui, N.; Hoshiko, K.; Shimojima, T.; Wang, Z.; Hirahara, T.; Ishizaka, K.; Et Al. Redox Control And High Conductivity Of Nickel Bis(Dithiolene) Complex Π-Nanosheet:
A
Potential Organic Two-Dimensional Topological Insulator. J. Am. Chem. Soc. 2014, 136 (41), 14357–14360. (c) Huang, X.; Sheng, P.; Tu, Z.; Zhang, F.; Wang, J.; Geng, H.; Zou, Y.; Di, C.; Yi, Y.; Sun, Y.; Et Al.
A
Two-Dimensional Π-d Conjugated Coordination Polymer With Extremely High Electrical Conductivity And Ambipolar Transport Behaviour. Nat. Commun. 2015, 6 (1), 7408. (d) Dong, R.; Pfeffermann, M.; Liang, H.; Zheng, Z.; Zhu, X.; Zhang, J.; Feng, X. Large-Area, Free-Standing, Two-Dimensional Supramolecular Polymer Single-Layer Sheets For Highly Efficient Electrocatalytic Hydrogen Evolution. Angew. Chemie Int. Ed. 2015, 54 (41), 12058–12063. (e) Pal, T.; Kambe, T.; Kusamoto, T.; Foo, M. L.; Matsuoka, R.; Sakamoto, R.; Nishihara,
(46), 40752–40759. (i) Huang, X.; Zhang, S.; Liu, L.; Yu, L.; Chen, G.; Xu, W.; Zhu, D. Superconductivity In Copper(II)-Based Coordination Polymer With Perfect Kagome Structure. Angew. Chemie Int. Ed. 2018, 57 (1), 146–150.
H. Interfacial Synthesis Of Electrically Conducting Palladium Bis(Dithiolene) Complex Nanosheet. Chempluschem 2015, 80 (8), 1255–1258. (f) Clough, A. J.; Yoo, J. W.; Mecklenburg, M. H.; Marinescu, S. C. Two-Dimensional Metal–Organic Surfaces For Efficient Hydrogen Evolution From Water. J. Am. Chem. Soc. 2015, 137 (1), 118–121. (g) Maeda, H.; Sakamoto, R.; Nishihara, H. Coordination Programming Of Two-Dimensional Metal Complex Frameworks. Langmuir 2016, 32 (11), 2527–2538. (h) Huang, X.; Yao, H.; Cui, Y.; Hao, W.; Zhu, J.; Xu, W.; Zhu, D. Conductive Copper Benzenehexathiol Coordination Polymer As
A
Hydrogen Evolution Catalyst. ACS Appl. Mater. Interfaces 2017,
9
A
7
8
9
Ji, Z.; Trickett, C.; Pei, X.; Yaghi, O. M., Linking Molybdenum–Sulfur Clusters for Electrocatalytic Hydrogen Evolution. J. Am. Chem. Soc. 2018, Article ASAP, DOI:10.1021/jacs.8b09807
(a) Beinert, H.; Holm, R. H.; Münck, E., Iron-Sulfur Clusters: Nature's Modular, Multipurpose Structures. Science 1997, 277 (5326), 653-659. (b) Venkateswara Rao, P.; Holm, R. H., Synthetic Analogues of The Active Sites of Iron−Sulfur Proteins. Chem. Rev. 2004, 104 (2), 527-560.
(a) Jormakka, M.; Törnroth, S.; Byrne, B.; Iwata, S., Molecular Basis of Proton Motive Force Generation: Structure of Formate Dehydrogenase-N. Science 2002, 295 (5561), 1863-1868. (b) Jormakka, M.; Richardson, D.; Byrne, B.; Iwata, S., Architecture of NarGH Reveals a Structural Classification of Mo-bisMGD Enzymes. Structure 2004, 12 (1), 95-104. (c) Sazanov, L. A.; Hinchliffe, P., Structure of the Hydrophilic Domain of Respiratory Complex I from Thermus thermophilus. Science 2006, 311 (5766), 1430-1436. (d) Jormakka, M.; Yokoyama, K.; Yano, T.; Tamakoshi, M.; Akimoto, S.; Shimamura, T.; Curmi, P.; Iwata, S., Molecular mechanism of energy conservation in polysulfide respiration. Nat. Struct. Mol. Biol. 2008, 15, 730. (e) Hayashi, T.; Stuchebrukhov, A. A., Electron tunneling in respiratory complex I. Proc. Natl. Acad. Sci. U.S.A. 2010, 107 (45), 19157-19162. (f) Weinert, T.; Huwiler, S. G.; Kung, J. W.; Weidenweber, S.; Hellwig, P.; Stärk, H.-J.; Biskup, T.; Weber, S.; Cotelesage, J. J. H.; George, G. N.; Ermler, U.; Boll, M., Structural basis of enzymatic benzene ring reduction. Nat. Chem. Biol. 2015, 11, 586. (g) Youngblut, M. D.; Tsai, C.-L.; Clark, I. C.; Carlson, H. K.; Maglaqui, A. P.;
Gau-Pan, P. S.; Redford, S. A.; Wong, A.; Tainer, J. A.; Coates, J. D., Perchlorate Reductase Is Distinguished by Active Site Aromatic Gate Residues. J. Biol. Chem. 2016, 291 (17), 9190-9202. (h) Wagner, T.; Ermler, U.; Shima, S., The methanogenic CO2 reducing-and-fixing enzyme is bifunctional and contains 46 [4Fe-4S] clusters. Science 2016, 354 (6308), 114-117. (i) Glasser, N. R.; Oyala, P. H.; Osborne, T. H.; Santini, J. M.; Newman, D. K., Structural and mechanistic analysis of the arsenate respiratory reductase provides insight into environmental arsenic transformations. Proc. Natl. Acad. Sci. U.S.A. 2018, published ahead of print August 13, 2018 https://doi.org/10.1073/pnas.1807984115.
10 Trikalitis, P. N.; Bakas, T.; Papaefthymiou, V.; Kanatzidis, M. G., Supramolecular Assembly of Hexagonal Mesostructured Germanium Sulfide and Selenide Nanocomposites Incorporating the Biologically Relevant Fe4S4 Cluster. Angew. Chemie Int. Ed. 2000, 39 (24), 4558-4562.
11 (a)Yuhas, B. D.; Prasittichai, C.; Hupp, J. T.; Kanatzidis, M. G., Enhanced Electrocatalytic Reduction of CO2 With Ternary Ni-Fe4S4 And Co-Fe4S4-Based Biomimetic Chalcogels. J. Am. Chem. Soc. 2011, 133 (40), 15854-15857. (b) Shim, Y.; Yuhas, B. D.; Dyar, S. M.; Smeigh, A. L.; Douvalis, A. P.; Wasielewski, M. R.; Kanatzidis, M. G., Tunable Biomimetic Chalcogels With Fe4S4 Cores And [Snns2n+2]4– (N
=
1, 2, 4) Building Blocks for Solar Fuel Catalysis. J. Am. Chem. Soc. 2013, 135 (6), 2330-2337.
12 (a) Moutet, J.-C.; Pickett, C. J., Iron–sulphur clusters in ionic polymers on electrodes. J. Chem. Soc., Chem. Commun. 1989, 3, 188-190. (b) Pickett, C. J.; Ryder, K. S.; Moutet, J.-C., Synthesis and anodic polymerisation of an L-cystine derivatised pyrrole; copolymerisation with
13 Rancourt, D. G.; Ping, J. Y., Voigt-based methods for arbitrary-shape static hyperfine parameter distributions in Mössbauer spectroscopy. Nucl. Instrum. Methods Phys. Res. 1991, 58 (1), 85-97.
a
tetraalkylammonium pyrrole allows reduction of the cystinyl film to
a
cysteinyl state that binds electroactive [Fe4S4]2+ centres. J. Chem. Soc., Chem. Commun. 1992, 9, 694-697. (c) Pickett, C. J.; Ryder, K. S.; Moutet, J.-c., Iron–sulfur clusters in ionic polymers on electrodes. J. Chem. Soc., Dalton Trans. 1993,24, 3695-3703. (d) Pickett, C. J.; Ryder, K. S., Bioinorganic reaction centres on electrodes. Modified electrodes possessing amino acid, peptide and ferredoxin-type groups on a poly(pyrrole) backbone. J. Chem. Soc., Dalton Trans. 1994, 14, 2181-2189.
14 (a) Morris, W.; Wang, S.; Cho D.; Auyeung, E.; Li, P.; Farha, O. K.; Mirkin, C. A. Role of Modulators in Controlling the Colloidal Stability and Polydispersity of the UiO-66 Metal−Organic Framework. ACS Appl. Mater. Interfaces 2017, 9, 33413-33418; (b) Schaate, A.; Roy, P.; Godt, A.; Lippke, J.; Waltz, F.; Wiebcke, M.; Behrens, P. Modulated Synthesis of Zr-Based Metal–Organic Frameworks: From Nano to Single Crystals Chem. Eur. J. 2011, 17, 6643 – 6651
15 Friese, V. A. and Kurth, D. G. Soluble dynamic coordination polymers as paradigm for materials science. Coord. Chem. Rev. 2008, 252, 199–211
16 (a) Beaucage, G., Approximations Leading to Unified Exponential/Power-Law Approach to Small-Angle Scattering. J. Appl. Crystallogr. 1995, 28 (6), 717-728. (b) Beaucage, G., Small-Angle Scattering from Polymeric Mass Fractals of Arbitrary Mass-Fractal Dimension. J. Appl. Crystallogr.1996, 29 (2), 134-146. (c) Ilavsky, J.; Jemian, P. R., Irena: tool suite for modeling and analysis of small-angle scattering. J. Appl. Crystallogr. 2009, 42 (2), 347-353.
a
a
17 Hammouda, B.; Worcester, D., The Denaturation Transition of DNA In Mixed Solvents. Biophys. J. 2006, 91 (6), 2237-2242.
18 Page, C. C.; Moser, C. C.; Chen, X.; Dutton, P. L., Natural engineering principles of electron tunnelling in biological oxidation–reduction. Nature 1999, 402, 47.
19 Depamphilis, B. V.; Averill, B. A.; Herskovitz, T.; Que, L.; Holm, R. H., Synthetic Analogs of The Active Sites of Iron-Sulfur Proteins. VI. Spectral and Redox Characteristics of The Tetranuclear Clusters [Fe4S4(SR)4]2-. J. Am. Chem. Soc. 1974, 96 (13), 4159-4167.
20 Venkateswara Rao, P.; Holm, R. H., Synthetic Analogues of The Active Sites of Iron−Sulfur Proteins. Chem. Rev. 2004, 104 (2), 527-560.
21 O'Sullivan, T.; Millar, M. M., Synthesis and Study of An Analog for the [Fe4S4]3+ Center of Oxidized High Potential Iron-Sulfur Proteins. J. Am. Chem. Soc. 1985, 107 (13), 4096-4097.
22 Sun, L.; Park, S. S.; Sheberla, D.; Dincǎ, M. Measuring And Reporting Electrical Conductivity In Metal-Organic Frameworks: Cd2(TTFTB) As
23 Laskowski, E. J.; Frankel, R. B.; Gillum, W. O.; Papaefthymiou, G. C.; Renaud, J.; Ibers, J. A.; Holm, R. H., Synthetic analogs of the 4-Fe active sites of reduced ferredoxins. Electronic properties of the tetranuclear trianions [Fe4S4(SR)4]3- and the structure of [(C2H5)3(CH3)N]3[Fe4S4(SC6H5)4]. J. Am. Chem. Soc. 1978, 100 (17), 5322-5337.
24 Kanatzidis, M. G.; Baenziger, N. C.; Coucouvanis, D.; Simopoulos, A.; Kostikas, A., Synthesis, structural characterization, and electronic structures of the mixed terminal ligand iron-sulfur cubanes [Fe4S4Cl2(XPh)2]2- (X S, O) and [Fe4S4(SPh)2(OC6H4Me-p)2]2-. The first examples of [Fe4S4]2+ cores with noncompressed D2d idealized geometry. J. Am. Chem. Soc. 1984, 106 (16), 4500-4511.
25 Cambray, J.; Lane, R. W.; Wedd, A. G.; Johnson, R. W.; Holm, R. H., Chemical and Electrochemical Interrelationships of the 1-Fe, 2-Fe, And 4-Fe Analogs of The Active Sites of Iron-Sulfur Proteins. Inorg. Chem. 1977, 16 (10), 2565-2571.
26 Willy, L.; Emil, M., Über Die Salze Der Phosphor-Hexafluorwasserstoffsäure, HPF6. Ber. Dtsch. Chem. Ges. (A And Series) 1930, 63 (5), 1058-1070.
27 Christou, G.; Garner, C. D.; Balasubramaniam, A.; Ridge, B.; Rydon, H. N.; Stiefel, E. I.; Pan, W.-H., Tetranuclear Iron-Sulfur And Iron-Selenium Clusters. In Inorg. Synth., Fackler, J. P. J., Ed. 1982; Vol. 21.
28 Maiolo, F.; Testaferri, L.; Tiecco, M.; Tingoli, M., Fragmentation Of Aryl Alkyl Sulfides. Simple, One-Pot Synthesis Of Polymercaptobenzenes From Polychlorobenzenes. J. Org. Chem. 1981, 46 (15), 3070-3073.
A Case Study. J. Am. Chem. Soc. 2016, 138 (44), 14772–14782.
=
a
B
A
29 Que, L.; Bobrik, M. A.; Ibers, J. A.; Holm, R. H., Synthetic Analogs Of The Active Sites Of Iron-Sulfur Proteins. VII. Ligand Substitution Reactions Of The Tetranuclear Clusters [Fe4S4(SR)]2- And The Structure Of Bis(Tetramethylammonium) [Tetra-µ-Sulfide-Tetrakis(Benzenethiolato)Tetrairon]. J. Am. Chem. Soc. 1974, 96 (13), 4168-4178.
30 Howarth, A. J.; Peters, A. W.; Vermeulen, N. A.; Wang, T. C.; Hupp, J. T.; Farha, O. K., Best Practices For The Synthesis, Activation, And Characterization Of Metal–Organic Frameworks. Chem. Mater. 2017, 29 (1), 26-39.
31 (a) https://www.synchrotron-soleil.fr/fr/lignes-de-lumiere/proxima-2a (b) Duran, D.; Le Couster, S.; Desjardins, K.; Delmotte, A.; Fox, G.; Meijers, R.; Moreno, T.; Savko, M.; Shepard, W., PROXIMA 2A – A New Fully Tunable Micro-focus Beamline for Macromolecular Crystallography. J. Phys.: Conf. Ser. 2013, 425, 012005.
33 Louër, D. and Boultif, A., Some further considerations in powder diffraction pattern indexing with the dichotomy method. Powder Diffr. 2014, 29 (Suppl. S2), S7-S12.
34 Altomare, A.; Giacovazzo, C.; Guagliardi, A.; Moliterni, A.; Rizzi, R.; Werner, P.-E., New techniques for indexing: N-TREOR in EXPO. J. Appl. Crystallogr. 2000, 33, 1180-1186.
36 Altomare, A.; Cuocci, C.; Giacovazzo, C.; Moliterni, A.; Rizzi, R.; Corriero, N.; Falcicchio, A., EXPO2013:
37 Favre-Nicolin, V.; Cerny, R., FOX, `free objects for crystallography': modular approach to ab initio structure determination from powder diffraction. J. Appl. Crystallogr. 2002, 35 (6), 734-743.
38 Larson A. C. and Von Dreele, R. B., General Structure Analysis System (GSAS), Los Alamos National Laboratory Report LAUR 1994, 86-748.
a kit of tools for phasing crystal structures from powder data. J. Appl. Crystallogr. 2013, 46 (4), 1231-1235.
a
39 (a) Liu, Q.; Zhang, C.; Chen, C.; Zhu, H.; Deng, Y.; Cai, J., Syntheses and structural characterizations of Fe4S4 cubane-like cluster compounds containing cycloalkylthiolate ligands. Sci. China Chem. 1997, 40 (6), 616-623. (b) Al-Rammahi, T. M. M.; Waddell, P. G.; Henderson, R. A. CCDC 1472848: Experimental Crystal Structure Determination, 2016, DOI: 10.5517/ccdc.csd.cc1lfm7w. (c) Al-Rammahi, T. M. M.; Waddell, P. G.; Henderson, R. A., X-ray crystal structures of [NHR3]2[Fe4S4X4] (X = PhS, R = Et or nBu; X = Cl, R = nBu): implications for sites of protonation in Fe–S clusters. Transition Metal Chemistry 2016, 41 (5), 555-561.
41 (a) Macrae, C. F.; Edgington, P. R.; McCabe, P.; Pidcock, E.; Shields, G. P.; Taylor, R.; Towler, M.; van de Streek, J., Mercury: visualization and analysis of crystal structures. J. Appl. Crystallogr. 2006, 39 (3), 453-457. (b) Macrae, C. F.; Bruno, I. J.; Chisholm, J. A.; Edgington, P. R.; McCabe, P.; Pidcock, E.; Rodriguez-Monge, L.; Taylor, R.; van de Streek, J.; Wood, P. A., Mercury CSD 2.0 - new features for the visualization and investigation of crystal structures. J. Appl. Crystallogr. 2008, 41 (2), 466-470.
ACS Paragon Plus Environment