Communication
ChemComm
Fig. 5 MTT assay of H2S-Gem for 24, 48 and 72 h in (a) HeLa, (b) A549 and (c) WI38 cells. Error bars indicate SD, n = 5.
6 R. Mahato, W. Tai and K. Cheng, Adv. Drug Delivery Rev., 2011, 63,
659–670.
7 S. Zhang, K. H. Chan, R. K. Prud’Homme and A. Link, Mol.
Pharmaceutics, 2012, 9, 2228–2236.
8 E. Kim, D. Kim, H. Jung, J. Lee, S. Paul, N. Selvapalam, Y. Yang,
N. Lim, C. G. Park and K. Kim, Angew. Chem., Int. Ed., 2010, 49,
4405–4408.
9 G. Cafeo, G. Carbotti, A. Cuzzola, M. Fabbi, S. Ferrini, F. H. Kohnke,
G. Papanikolaou, M. R. Plutino, C. Rosano and A. J. P. White, J. Am.
Chem. Soc., 2013, 135, 2544–2551.
insufficient endogenous H2S formation in WI38 cells disfavors H2S-
Gem to show a considerable extent of anti-proliferative activity.
In conclusion, we demonstrated the endogenous H2S stimu-
lated theranostic H2S-Gem for selectively ending the progres-
sion of cancer via activation of chemotherapeutic gemcitabine.
The theranostic prodrug H2S-Gem constituted of a combination
of coumarin and gemcitabine. It showed UV-absorption at
400 nm and emission at 505 nm in the presence of exogenous
H2S. This theranostic H2S-Gem was even activated in the
presence of a minimal quantity (37 nM) of H2S. The gemcita-
bine release process is highly selective toward H2S, and such a
specific activation allows gemcitabine release exclusively in
cancer cells. In vitro cellular images indicated that the endo-
genous H2S level in cancer cells is relatively high compared to
that in the normal WI38 cells. The inhibition assay study
indicated that cystathionine b-synthase and cystathionine g-
lyase are sources of H2S formation in cancer cells. It showed
selective antiproliferative activity exclusively in the cancer cells
(HeLa and A549) over the human normal fibroblast cells
(WI38). All of these facts advocated that it is a unique strategy
for releasing cargo and selectively tracking therapeutic events
in cancer cells without the support of any tumor/cancer cell-
specific ligands.
10 C. Sawyers, Nature, 2004, 432, 294–297.
11 I. Brigger, C. Dubernet and P. Couvreur, Adv. Drug Delivery Rev.,
2012, 64, 24–36.
12 (a) Y. Zhou, M. Maiti, A. Sharma, L. Yu, X. W. Lv, J. Shin, M. Won,
J. Han, A. Podder, K. N. Bobba, S. Bhuniya and J. S. Kim, J. Controlled
Release, 2018, 288, 14–22; (b) A. Sharma, M.-G. Lee, H. Shi, M. Won,
J. F. Arambula, J. L. Sessler, J. Y. Lee, S.-G. Chi and J. S. Kim, Chem,
2018, 4, 2370–2383; (c) S. Barman, S. K. Mukhopadhyay, S. Biswas,
S. Nandi, M. Gangopadhyay, S. Dey, A. Anoop and N. D. Pradeep
Singh, Angew. Chem., 2016, 128, 4266–4270; (d) S. Maiti, N. Park,
J. H. Han, H. M. Jeon, J. H. Lee, S. Bhuniya, C. Kang and J. S. Kim,
J. Am. Chem. Soc., 2013, 135, 4567–4572; (e) R. Kumar, E.-J. Kim,
J. Han, H. Lee, W. S. Shin, H. M. Kim, S. Bhuniya, J. S. Kim and
K. S. Hong, Biomaterials, 2016, 104, 119–128; ( f ) F. Kong, Z. Liang,
D. Luan, X. Liu, K. Xu and B. A. Tang, Anal. Chem., 2016, 88,
6450–6456; (g) T. Kim, H. M. Jeon, H. T. Le, T. W. Kim, C. Kang
and J. S. Kim, Chem. Commun., 2014, 50, 7690–7693; (h) P. Liu,
D. Yan, P. Zhang, F. Zeng, B. Li and S. A. Wu, Chem. Commun., 2015,
51, 9567–9570; (i) D. Dutta, S. M. Alex, K. N. Bobba, K. K. Maiti and
S. Bhuniya, ACS Appl. Mater. Interfaces, 2016, 8, 33430–33438.
´
13 C. Szabo, C. Coletta, C. Chao, K. Modis, B. Szczesny,
This research was supported by the National Research
Foundation of Korea (NRF) grant funded by the Korea govern-
ment (MSIT) (2021R1F1A1045790). Also, this work is supported
by the SERB, India (Grant No. CRG/2019/002068, SB), CSIR-
India (Grant No. 02(0386)19/EMR II, SB), and the DST (INT/
RUS/RFBR/392, SB).
A. Papapetropoulos and M. R. Hellmich, Proc. Natl. Acad. Sci.
U. S. A., 2013, 110, 12474–12479.
14 (a) H. Zhang, X. Kong, Y. Tang and W. Lin, ACS Appl. Mater.
Interfaces, 2016, 8, 16227–16239; (b) D. Zheng, Z. Gao, T. Xu,
C. Liang, Y. Shi, L. Wang and Z. Yang, Nanoscale, 2018, 10,
21459–21465; (c) K. N. Bobba, G. Saranya, P. T. Sujai,
M. M. Joseph, N. Velusamy, A. Podder, K. K. Maiti and S. Bhuniya,
ACS Appl. Bio Mater., 2019, 2, 1322–1330; (d) K. N. Bobba, A. Binoy,
S. Koo, A. Podder, N. Mishra, J. S. Kim and S. Bhuniya, Chem.
Commun., 2019, 55, 6429–6432; (e) B. Shi, N. Ren, L. Gu, G. Xu,
R. Wang, T. Zhu, Y. Zhu, C. Fan, C. Zhao and H. Tian, Angew. Chem.,
Int. Ed., 2019, 58, 16826–16830.
Conflicts of interest
There are no conflicts to declare.
15 A. Henthorn and M. D. Pluth, J. Am. Chem. Soc., 2015, 137,
15330–15336.
16 H. C. Zhu, C. X. Liang, X. X. Cai, H. M. Zhang, C. Y. Liu, P. Jia,
Z. L. Li, Y. M. Yu, X. Zhang, W. L. Sheng and B. C. Zhu, Anal. Chem.,
2019, 92, 1883–1889.
17 S. Y. Park, W. Kim, S. H. Park, J. Han, J. Lee, C. Kang and M. H. Lee,
Chem. Commun., 2017, 53, 4457–4460.
Notes and references
1 R. L. Siegel, K. D. Miller and A. Jemal, Ca-Cancer J. Clin., 2019, 69, 7–34.
2 J. H. Atkins and L. J. Gershell, Nat. Rev. Cancer, 2002, 2, 645–646.
3 D. J. Irvine, Nat. Mater., 2011, 10, 342–343.
4 J. A. Hubbell and R. Langer, Nat. Mater., 2013, 12, 963–966.
5 S. Mura, J. Nicolas and P. Couvreur, Nat. Mater., 2013, 12, 991–1003.
18 N. Velusamy, A. Binoy, K. N. Bobba, D. Nedungadi, N. Mishra and
S. Bhuniya, Chem. Commun., 2017, 53, 8802.
Chem. Commun.
This journal is © The Royal Society of Chemistry 2021