10.1002/anie.202001123
Angewandte Chemie International Edition
RESEARCH ARTICLE
Bioorg. Med. Chem. 2001, 9, 2501-2510; c) D. Chang, E.
Lindberg, N. Winssinger, J. Am. Chem. Soc. 2017, 139, 1444-
1447; d) K. K. Sadhu, N. Winssinger, Chemistry – A European
Journal 2013, 19, 8182-8189; e) H. Wu, S. C. Alexander, S.
Jin, N. K. Devaraj, J. Am. Chem. Soc. 2016, 138, 11429-
11432; f) K. T. Kim, S. Angerani, D. Chang, N. Winssinger, J.
Am. Chem. Soc. 2019, 141, 16288-16295.
L. Holtzer, I. Oleinich, M. Anzola, E. Lindberg, K. K. Sadhu, M.
Gonzalez-Gaitan, N. Winssinger, ACS Central Science 2016,
2, 394-400.
J. Chiu, P. J. Hogg, The Journal of biological chemistry 2019,
294, 2949-2960.
D. Butera, T. Wind, A. J. Lay, J. Beck, F. J. Castellino, P. J.
Hogg, The Journal of biological chemistry 2014, 289, 2992-
3000.
Conclusion
In this work we first demonstrate that by rationally placing
disulfide and thiol functionalities on opposite hairpins of HCR we
can amplify a DNA signal to selectively release small molecules.
This is the first time HCR has been used for the triggered release
of small molecules which can be monitored in three ways 1) by
the degree of monomer consumption, 2) by the degree of ligation
and 3) by fluorescence intensity. Unlike previous HCR methods
where small molecule cleavage is non-specific, our construct is
built to only carry out reactions in the presence of an initiator,
significantly decreasing non-specific cargo release. Our synthetic
approach can also be applied to other DNA toehold-mediated
amplification processes, such as CHA. Additionally, we were able
to take advantage of the metastability of the HCR hairpins and
integrate both reactive hairpins into single unit nanodevices. We
used both DNA and SNA assemblies which, importantly, were
able to separate reactive functional groups and isolate reactivity,
preventing release, and amplify release when triggered. The
nanostructures not only release small molecules, but in addition
[6]
[7]
[8]
[9]
J. Chiu, J. W. H. Wong, M. Gerometta, P. J. Hogg,
Biochemistry 2014, 53, 7-9.
[10] Y. He, D. R. Liu, Nat. Nanotechnol. 2010, 5, 778.
[11] D. Y. Zhang, G. Seelig, Nature Chem. 2011, 3, 103-113.
[12] H. M. T. Choi, V. A. Beck, N. A. Pierce, ACS Nano 2014, 8,
4284-4294.
[13] a) K. Ren, Y. Xu, Y. Liu, M. Yang, H. Ju, ACS Nano 2018, 12,
263-271; b) G. Chatterjee, N. Dalchau, R. A. Muscat, A.
Phillips, G. Seelig, Nat. Nanotechnol. 2017, 12, 920; c) H. Bui,
V. Miao, S. Garg, R. Mokhtar, T. Song, J. Reif, Small 2017, 13,
1602983; d) H. Bui, S. Shah, R. Mokhtar, T. Song, S. Garg, J.
Reif, ACS Nano 2018, 12, 1146-1155; e) J. Wang, D.-X.
Wang, J.-Y. Ma, Y.-X. Wang, D.-M. Kong, Chemical Science
2019.
conditionally generate
a partially ligated, crosslinked DNA
polymer, which could have added therapeutic effects, in analogy
to enzyme-driven peptide assembly. Given the abundance of
DNA templated reactions and different HCR sequences, future
work will focus on increasing sensitivity and accelerating the
kinetics, and adapting this method for in vitro/vivo release
applications.
[14] C. R. Park, S. J. Park, W. G. Lee, B. H. Hwang, Biotechnol.
Bioprocess Eng. 2018, 23, 355-370.
[15] H. M. T. Choi, J. Y. Chang, L. A. Trinh, J. E. Padilla, S. E.
Fraser, N. A. Pierce, Nat. Biotechnol. 2010, 28, 1208-1212.
[16] a) G. Zhu, J. Zheng, E. Song, M. Donovan, K. Zhang, C. Liu,
W. Tan, Proceedings of the National Academy of Sciences
2013, 110, 7998-8003; b) Y.-M. Wang, Z. Wu, S.-J. Liu, X.
Chu, Anal. Chem. 2015, 87, 6470-6474.
.
[17] W. Meng, R. A. Muscat, M. L. McKee, P. J. Milnes, A. H. El-
Sagheer, J. Bath, B. G. Davis, T. Brown, R. K. O'Reilly, A. J.
Turberfield, Nature Chem. 2016, 8, 542.
Acknowledgements
This work was supported by NSERC, FRQNT, CFI, and the
Canada Research Chairs Program. A.P. thanks NSERC for a
graduate scholarship. H.F.S thanks the Canada Council for the
Arts for a Killam Fellowship. H.F.S is a Cottrell Scholar of the
Research Corporation. H.F.S. and A.P. also thank the Mass
Spectroscopy Facility (McGill University) for their help with the
HPLC, and LC-MS experiments.
[18] T. Jiang, L. Zhou, H. Liu, P. Zhang, G. Liu, P. Gong, C. Li, W.
Tan, J. Chen, L. Cai, Anal. Chem. 2019, 91, 6996-7000.
[19] a) M. De Stefano, K. Vesterager Gothelf, ChemBioChem 2016,
17, 1122-1126; b) M. L. McKee, A. C. Evans, S. R. Gerrard, R.
K. O'Reilly, A. J. Turberfield, E. Stulz, Org. Biomol. Chem.
2011, 9, 1661-1666; c) D. Li, X. Wang, F. Shi, R. Sha, N. C.
Seeman, J. W. Canary, Org. Biomol. Chem. 2014, 12, 8823-
8827.
[20] V. Patzke, J. S. McCaskill, G. v. Kiedrowski, Angew. Chem.
Int. Ed. 2014, 53, 4222-4226.
[21] a) Y. Meyer, J.-A. Richard, M. Massonneau, P.-Y. Renard, A.
Romieu, Org. Lett. 2008, 10, 1517-1520; b) Y. Meyer, J.-A.
Richard, B. Delest, P. Noack, P.-Y. Renard, A. Romieu, Org.
Biomol. Chem. 2010, 8, 1777-1780.
Keywords: Dynamic DNA Nanotechnology
•
Isothermal
Amplification
Catalysis
• Self-Immolative • Nucleic Acid Templated
[22] K. Dan, A. T. Veetil, K. Chakraborty, Y. Krishnan, Nat.
Nanotechnol. 2019, 14, 252-259.
[23] Andrew D. Bosson, Jesse R. Zamudio, Phillip A. Sharp, Mol.
Cell 2014, 56, 347-359.
[24] a) X. Chen, N. Briggs, J. R. McLain, A. D. Ellington,
Proceedings of the National Academy of Sciences 2013, 110,
5386-5391; b) D. Y. Zhang, E. Winfree, Nucleic Acids Res.
2010, 38, 4182-4197.
[25] D. Y. Zhang, A. J. Turberfield, B. Yurke, E. Winfree, Science
2007, 318, 1121-1125.
[1]
[2]
M. Di Pisa, O. Seitz, ChemMedChem 2017, 12, 872-882.
a) D. M. Kolpashchikov, Acc. Chem. Res. 2019, 52, 1949-
1956; b) Y. Yu, B. Jin, Y. Li, Z. Deng, Chemistry – A European
Journal 2019, 25, 9785-9798.
[3]
a) H. H. Fakih, J. J. Fakhoury, D. Bousmail, H. F. Sleiman,
ACS Appl. Mater. Interfaces 2019, 11, 13912-13920; b) K. E.
Bujold, J. C. C. Hsu, H. F. Sleiman, J. Am. Chem. Soc. 2016,
138, 14030-14038; c) F. Nagatsugi, S. Nakayama, S. Sasaki,
Nucleosides, Nucleotides Nucleic Acids 2007, 26, 799-803; d)
A. Okamoto, K. Tanabe, T. Inasaki, I. Saito, Angew. Chem. Int.
Ed. 2003, 42, 2502-2504; e) K. E. Bujold, J. Fakhoury, T. G.
W. Edwardson, K. M. M. Carneiro, J. N. Briard, A. G. Godin, L.
Amrein, G. D. Hamblin, L. C. Panasci, P. W. Wiseman, H. F.
Sleiman, Chemical Science 2014, 5, 2449-2455.
a) R. M. Dirks, N. A. Pierce, Proc. Natl. Acad. Sci. U. S. A.
2004, 101, 15275-15278; b) P. Yin, H. M. T. Choi, C. R.
Calvert, N. A. Pierce, Nature 2008, 451, 318; c) Z. Ma, J. S.
Taylor, Proc. Natl. Acad. Sci. U. S. A. 2000, 97, 11159-11163.
a) K. Gorska, A. Manicardi, S. Barluenga, N. Winssinger,
Chem. Commun. 2011, 47, 4364-4366; b) Z. Ma, J.-S. Taylor,
[26] S. Mura, J. Nicolas, P. Couvreur, Nat. Mater. 2013, 12, 991-
1003.
[27] a) Q. Xu, G. Zhu, C.-y. Zhang, Anal. Chem. 2013, 85, 6915-
6921; b) L. Wang, W. Li, J. Sun, S.-Y. Zhang, S. Yang, J. Li, J.
Li, H.-H. Yang, Anal. Chem. 2018, 90, 14433-14438.
[28] A. Lacroix, E. Vengut-Climent, D. de Rochambeau, H. F.
Sleiman, ACS Central Science 2019, 5, 882-891.
[29] W. Engelen, S. P. W. Wijnands, M. Merkx, J. Am. Chem. Soc.
2018, 140, 9758-9767.
[4]
[5]
[30] J. Zhou, X. Du, N. Yamagata, B. Xu, J. Am. Chem. Soc. 2016,
138, 3813-3823.
7
This article is protected by copyright. All rights reserved.