significantly in wide-scale applications in environmental
research.
This work is partly funded by Nano Mission Initiative of
DST, New Delhi. AM and JM thank CSIR, New Delhi, for
their respective senior research fellowships.
Notes and references
1
2
3
J. D. Figueroa, T. Fout, S. Plasynski, H. McIlvried and
R. D. Srivastava, Int. J. Greenhouse Gas Control, 2008, 2, 9.
´ ´
D. Lozano-Castello, D. Cazorla-Amoros and A. Linares-Solano,
Carbon, 2004, 42, 1233.
(a) P. D. C. Dietzel, R. E. Johnsen, H. Fjellvag, S. Bordiga,
E. Groppo, S. Chavan and R. Blom, Chem. Commun., 2008,
5
125; (b) A. Demessence, D. M. D’Alessandro, M. L. Foo and
J. R. Long, J. Am. Chem. Soc., 2009, 131, 8784; (c) A. O. Yazaydin,
A. I. Benin, S. A. Faheem, P. Jakubczak, J. J. Low, R. R. Willis
and R. Q. Snurr, Chem. Mater., 2009, 21, 1425; (d) Q. Xu, D. Liu,
Q. Yang, C. Zhong and J. Mi, J. Mater. Chem., 2010, 20, 706;
(
e) K. Nakagawa, D. Tanaka, S. Horike, S. Shimomura,
M. Higuchi and S. Kitagawa, Chem. Commun., 2010, 46, 4258.
H. Furukawa and O. M. Yaghi, J. Am. Chem. Soc., 2009,
2
Fig. 2 Gravimetric CO uptake for Fe-POPs at 273 K.
4
1
31, 8875.
reaction with almost purely non-porous polymers was
obtained.
5 (a) R. Banerjee, A. Phan, B. Wang, C. Knobler, H. Furukawa,
M. O’Keeffe and O. M. Yaghi, Science, 2008, 319, 939;
(
b) P. Kuhn, M. Antonietti and A. Thomas, Angew. Chem., Int.
2
In Fig. 2 we have plotted the CO adsorption isotherms at
Ed., 2008, 47, 3450; (c) M. Dogru, A. Sonnauer, A. Gavryushin,
P. Knochelb and T. Bein, Chem. Commun., 2011, 47, 1707.
6 K. Raidongia, A. Nag, K. P. S. S. Hembram, U. V. Waghmare,
R. Datta and C. N. R. Rao, Chem.–Eur. J., 2010, 16, 149.
273 K for three microporous porphyrin networks. The total
gravimetric uptake of POP-1 was 19.0 wt% and that for POP-2
and POP-3 were 18.6 and 9.0 wt%, respectively, at only 1 atm.
pressure. These curves are gradually increasing, suggesting
7
J. Tian, S. Q. Ma, P. K. Thallapally, D. Fowler, B. P. McGrail and
J. L. Atwood, Chem. Commun., 2011, 47, 7626.
further high adsorption capacity for CO
Among several CO adsorbing materials that have been reported
so far, ZIFs synthesized by Furukawa and Yaghi, MOF by
2
at elevated pressure.
8 (a) F. Svec, J. Germain and J. M. J. Frechet, Small, 2009, 10, 1098;
b) A. Trewin and A. I. Cooper, Angew. Chem., Int. Ed., 2010,
49, 1533; (c) S. Yuan, B. Dorney, D. White, S. Kirklin, P. Zapol,
L. Yu and D. J. Liu, Chem. Commun., 2010, 46, 4547.
(
2
4
15
16
6
Rosi et al., and Zhou et al. and BCN graphene by Rao et al.
are quite interesting due to their very high absorption capacity and
crystallinity in their framework structure. Although our Fe-POPs
possess relatively low surface areas and amorphous framework
structures compared to the above-mentioned materials, they
9
(a) N. Du, G. P. Robertson, I. Pinnau and M. D. Guiver, Macro-
molecules, 2010, 43, 8580; (b) H. Ren, T. Ben, E. Wang, X. Jing,
M. Xue, B. Liu, Y. Cui, S. Qiua and G. Zhu, Chem. Commun.,
2
010, 46, 291; (c) H. Zhao, Z. Jin, H. Su, X. Jing, F. Sun and
G. Zhu, Chem. Commun., 2011, 47, 6389; (d) R. Dawson,
D. J. Adams and A. I. Cooper, Chem. Sci., 2011, 2, 1173;
(
e) N. Du, M. M. Dal-Cin, I. Pinnau, A. Nicalek,
G. P. Robertson and M. D. Guiver, Macromol. Rapid Commun.,
011, 32, 631.
showed exceptionally high uptake for CO
organic network materials known till date the highest CO
observed was for porous benzimidazole-linked polymer (BILP-1).
2
. Among the porous
2
uptake
2
17
1
0 (a) A. P. Katsoulidis and M. G. Kanatzidis, Chem. Mater., 2011,
23, 1818; (b) C. F. Martin, E. Stoeckel, R. Clowes, D. J. Adams,
A. I. Cooper, J. J. Pis, F. Rubiera and C. Pevida, J. Mater. Chem.,
2011, 21, 5475; (c) M. Rose, N. Klein, I. Senkovska, C. Schrage,
P. Wollmann, W. Boehlmann, B. Boehringer, S. Fichtner and
À1
The CO
19 wt%). To the best of our knowledge this is the highest CO
uptake under these conditions (273 K, 1 bar pressure) for any
2
uptake observed in our Fe-POP-1 is 4.30 mmol g
(
2
porous organic network material. This higher CO adsorption
2
S. Kaskel, J. Mater. Chem., 2011, 21, 711.
capacity could be attributed to strong van der Waals force
11 (a) N. B. McKeown, S. Hanif, K. Msayib, C. E. Tattershall and
P. M. Budd, Chem. Commun., 2002, 2782; (b) L. Chen, Y. Yang
and D. L. Jiang, J. Am. Chem. Soc., 2010, 132, 9138;
(chemisorption) between (acidic) CO and POPs surface, due to
2
the existence of basic porphyrin subunits in the polymeric
(c) A. M. Shultz, O. K. Farha, J. T. Hupp and S. T. Nguyen,
Chem. Sci., 2011, 2, 686.
1
5
network. It is interesting to note that for all the Fe-POP samples
adsorption isotherms are reversible in nature. Thus, Fe-POPs can
1
2 (a) X. Feng, L. Chen, Y. Dong and D. Jiang, Chem. Commun.,
011, 47, 1979; (b) S. Wan, F. Gandara, A. Asano, H. Furukawa,
´
2
absorb large amount of CO
release the equivalent amount of CO
the pressure.
2
on exposure to atmosphere and can
A. Saeki, S. K. Dey, L. Liao, M. W. Ambrogio, Y. Y. Botros,
X. F. Duan, S. Seki, J. F. Stoddart and O. M. Yaghi, Chem.
Mater., 2011, 23, 4094–4097.
2
from its cavity while releasing
1
3 R. Pertch, S. G. Gangoli, E. Matijevic, W. Cai and S. Arajs,
J. Colloid Interface Sci., 1991, 144, 27.
In conclusion, we have designed a series of novel porphyrin
based porous organic polymers through a simple one-pot
bottom up approach involving extended aromatic substitution
on pyrrole with aromatic di-aldehydes. These materials possess
high surface areas and exhibited outstanding adsorption
1
4 A. Mihranyan, L. Nyholm, A. E. G. Bennett and M. Strømme,
J. Phys. Chem. B, 2008, 112, 12249.
15 J. An, S. J. Geib and N. L. Rosi, J. Am. Chem. Soc., 2010, 132, 38.
1
6 D. Q. Yuan, D. Zhao, D. F. Sun and H. C. Zhou, Angew. Chem.,
Int. Ed., 2010, 49, 5357.
7 M. G. Rabbani and H. M. El-Kaderi, Chem. Mater., 2011,
23, 1650.
capacity for CO
2
. A simple and affordable synthetic approach
1
described herein for designing Fe-POPs may thus contribute
2
50 Chem. Commun., 2012, 48, 248–250
This journal is c The Royal Society of Chemistry 2012