22 H. M. Irving, M. G. Miles and L. D. Pettit, Anal. Chim. Acta, 1967,
Notes and references
38, 475.
1 Abbreviations and definitions: see Fig. 1; ATP4Ϫ, adenosine 5Ј-
23 C. A. Blindauer, T. I. Sja˚stad, A. Holý, E. Sletten and H. Sigel,
J. Chem. Soc., Dalton Trans., 1999, 3661.
triphosphate; dAMP2Ϫ
,
2Ј-deoxyadenosine 5Ј-monophosphate;
dATP4Ϫ, 2Ј-deoxyadenosine 5Ј-triphosphate; I, ionic strength; M2ϩ
,
24 A. Holý, J. Günter, H. Dvoráková, M. Masojídková, G. Andrei,
ˇ
divalent metal ion; 9MeAde, 9-methyladenine; PA2Ϫ, dPMEA2Ϫ or
any other twofold negatively charged nucleotide or nucleotide
analogue; PMEApp4Ϫ, diphosphorylated PMEA; R-PO23Ϫ, simple
phosphate monoester or phosphonate ligand with R representing a
non-coordinating residue (see also legend of Fig. 2). Species written
without a charge either do not carry one or represent the species in
general (i.e. independent of their protonation degree); which of the
two possibilities applies is always clear from the context. In formulas
like M(H;dPMEA)ϩ, Hϩ and dPMEA2Ϫ are separated by a semi-
colon to facilitate reading, yet they appear within the same paren-
thesis to indicate that the proton is at the ligand without defining its
location (see Section 3.2).
2 (a) Interactions of Metal Ions with Nucleotides, Nucleic Acids and
Their Constituents, vol. 32 of Metal Ions in Biological Systems, eds.
A. Sigel and H. Sigel, Dekker, New York, 1996, pp. 1–814; (b)
Interrelations among Metal Ions, Enzymes and Gene Expression, vol.
25 of Metal Ions in Biological Systems, eds. H. Sigel and A. Sigel,
Dekker, New York, 1989, pp. 1–557.
R. Snoeck, J. Balzarini and E. De Clercq, J. Med. Chem., 1999, 42,
2064.
25 O. Yamauchi, A. Odani, H. Masuda and H. Sigel, Met. Ions Biol.
Syst., 1996, 32, 207 [see ref. 2(a)].
26 H. Sigel, S. S. Massoud and N. A. Corfù, J. Am. Chem. Soc., 1994,
116, 2958.
27 R. L. Benoit and M. Fréchette, Can. J. Chem., 1984, 62, 995.
28 C. Meiser, B. Song, E. Freisinger, M. Peilert, H. Sigel and
B. Lippert, Chem. Eur. J., 1997, 3, 388.
29 L. E. Kapinos, G. Kampf, R. Griesser, B. Lippert and H. Sigel,
Chimia, 1999, 53, 348.
30 H. Sigel, C. P. Da Costa, B. Song, P. Carloni and F. Gregánˇ, J. Am.
Chem. Soc., 1999, 121, 6248.
31 H. Sigel, D. Chen, N. A. Corfù, F. Gregánˇ, A. Holý and M. Strasák,
ˇ
Helv. Chim. Acta, 1992, 75, 2634.
32 A. Saha, N. Saha, L.-n. Ji, J. Zhao, F. Gregánˇ, S. A. A. Sajadi,
B. Song and H. Sigel, J. Biol. Inorg. Chem., 1996, 1, 231.
33 H. Sigel, K. Becker and D. B. McCormick, Biochim. Biophys. Acta,
1967, 148, 655.
34 H. Sigel and D. B. McCormick, Acc. Chem. Res., 1970, 3, 201.
35 S. A. A. Sajadi, B. Song, F. Gregánˇ and H. Sigel, Inorg. Chem., 1999,
38, 439.
36 H. Sigel, (a) Coord. Chem. Rev., 1995, 144, 287; (b) J. Indian Chem.
Soc., 1997, 74, 261 (P. Ray Award Lecture).
37 H. Sigel, Chem. Soc. Rev., 1993, 22, 255.
3 A. Holý, E. De Clercq and I. Votruba, ACS Symp. Ser., 1989, 401,
51.
4 E. De Clercq, Collect. Czech. Chem. Commun., 1998, 63, 480.
5 (a) L. Naesens, R. Snoeck, G. Andrei, J. Balzarini, J. Neyts and
E. De Clercq, Antiviral Chem. Chemother., 1997, 8, 1; (b)
D. Colledge, G. Civitico, S. Locarnini and T. Shaw, Antimicrob.
Agents Chemother., 2000, 44, 551.
6 R. B. Martin and Y. H. Mariam, Met. Ions Biol. Syst., 1979, 8,
57.
38 H. Sigel and B. Song, Met. Ions Biol. Syst., 1996, 32, 135 [see ref.
2(a)].
39 H. Irving and R. J. P. Williams, Nature (London), 1948, 162, 746;
7 R. Tribolet and H. Sigel, Eur. J. Biochem., 1987, 163, 353.
8 K. Aoki, Met. Ions Biol. Syst., 1996, 32, 91 [see ref. 2(a)].
J. Chem. Soc., 1953, 3192.
40 (a) C. A. Blindauer, A. H. Emwas, A. Holý, H. Dvoráková,
9 C. A. Blindauer, A. Holý, H. Dvoráková and H. Sigel, J. Chem.
ˇ
ˇ
Soc., Perkin Trans. 2, 1997, 2353.
E. Sletten and H. Sigel, Chem. Eur. J., 1997, 3, 1526; (b) C. A.
10 (a) D. Franková, Z. Zídek, E. Buchar, Z. Jiøièka and A. Holý,
Nucleosides Nucleotides, 1999, 18, 955; (b) Z. Zídek, D. Franková
and A. Holý, Eur. J. Pharmacol., 1999, 376, 91.
11 D. Villemin and F. Thibault-Starzyk, Synth. Commun., 1993, 23,
1053.
Blindauer, A. Holý, H. Dvoráková and H. Sigel, J. Biol. Inorg.
ˇ
Chem., 1998, 3, 423.
41 (a) H. Sigel and B. Lippert, Pure Appl. Chem., 1998, 70, 845; (b)
B. Song, J. Zhao, R. Griesser, C. Meiser, H. Sigel and B. Lippert,
Chem. Eur. J., 1999, 5, 2374.
42 M. S. Lüth, L. E. Kapinos, B. Song, B. Lippert and H. Sigel,
J. Chem. Soc., Dalton Trans., 1999, 357.
43 H. Sigel, N. A. Corfù, L.-n. Ji and R. B. Martin, Comments Inorg.
Chem., 1992, 13, 35.
44 R. B. Martin, Met. Ions Biol. Syst., 1996, 32, 61 [see ref. 2(a)].
45 R. B. Martin and H. Sigel, Comments Inorg. Chem., 1988, 6,
285.
12 E. De Clercq, T. Sakuma, M. Baba, R. Pauwels, J. Balzarini,
I. Rosenberg and A. Holý, Antiviral Res., 1987, 8, 261.
ˇ
13 A. Holý, I. Votruba, A. Merta, J. Cerný, J. Veselý, J. Vlach,
ˇ
K. Sedivá, I. Rosenberg, M. Otmar, H. Hrebabecký, M. Trávnícˇek,
ˇ
V. Vonka, R. Snoeck and E. De Clercq, Antiviral Res., 1990, 13, 295.
14 H. Dvorákova, A. Holý and I. Rosenberg, Collect. Czech. Chem.
ˇ
Commun., 1994, 59, 2069.
15 (a) J. Balzarini, Z. Hao, P. Herdewijn, D. G. Johns and E. De Clercq,
Proc. Natl. Acad. Sci. USA, 1991, 88, 1499; (b) B. L. Robbins,
J. Greenhaw, M. C. Connelly and A. Fridland, Antimicrob. Agents
Chemother., 1995, 39, 2304.
46 S. S. Massoud and H. Sigel, Inorg. Chem. 1988, 27, 1447.
47 H. Sigel, S. S. Massoud and R. Tribolet, J. Am. Chem. Soc., 1988,
110, 6857.
48 It may be added that for Co(dPMEA) no enhanced complex
stability is observed (Table 3); hence, the formation of macro-
chelated Co[(d)PMEA] species is not of relevance (see also ref. 19).
Similarly, the enhanced stability of the Cd(PMEA) system19,31,36 is
solely explained by equilibrium (9); i.e., there is no evidence for a
nucleobase–Cd2ϩ interaction. For the Ni[(d)PMEA] systems a
calculation analogous to the one carried out here for the Cu2ϩ
systems could be done, but because of the smaller stability
enhancements (compared to those observed with the Cu2ϩ systems)
and the relatively large error limits no conclusive results are
expected.
16 (a) A. Merta, I. Votruba, I. Rosenberg, M. Otmar, H. Hrebabecký,
ˇ
R. Bernaerts and A. Holý, Antiviral Res., 1990, 13, 209; (b) S. A.
Foster, J. Cerny and Y.-c. Cheng, J. Biol. Chem., 1991, 266, 238;
(c) P. Kramata, I. Votruba, B. Otová and A. Holý, Molecular
Pharmacol., 1996, 49, 1005; (d) G. Birkus, I. Votruba, A. Holý and
B. Otová, Biochem. Pharmacol., 1999, 58, 487.
17 (a) H. Sigel, Coord. Chem. Rev., 1990, 100, 453; (b) H. Sigel, Pure
Appl. Chem., 1998, 70, 969.
18 H. Sigel, B. Song, C. A. Blindauer, L. E. Kapinos, F. Gregánˇ and
N. Prónayová, Chem. Commun., 1999, 743.
19 H. Sigel, Pure Appl. Chem. 1999, 71, 1727.
49 C. A. Blindauer, A. Holý and H. Sigel, Collect. Czech. Chem.
Commun., 1999, 64, 613.
50 Of course, the sum of the now calculated 41% plus the 7.7% give the
20 (a) I. Rosenberg, A. Holý and M. Masojídková, Collect. Czech.
Chem. Commun., 1988, 53, 2753; (b) A. Holý, in Advances in
Antiviral Drug Design, ed. E. De Clercq, JAI Press, Greenwich, CT,
1993, vol. 1, pp. 179–231.
49% obtained previously for Cu(PMEA)cl/O/N3
.
51 R. B. Gómez-Coca, L. E. Kapinos, A. Holý, R. A. Vilaplana,
F. González-Vílchez and H. Sigel, to be submitted for
publication.
21 H. Sigel, A. D. Zuberbühler and O. Yamauchi, Anal. Chim. Acta,
1991, 255, 63.
2084
J. Chem. Soc., Dalton Trans., 2000, 2077–2084