Molecules 2021, 26, 738
15 of 16
44. Wang, S.; Liu, Y.; Ye, Y.; Meng, X.; Du, J.; Song, X.; Liang, Z. Ultrahigh volatile iodine capture by conjugated microporous polymer
based on N,N,N’,N’-tetraphenyl-1,4-phenylenediamine. Polym. Chem. 2019, 10, 2608–2615. [CrossRef]
45. Jiang, J.X.; Su, F.; Trewin, A.; Wood, C.D.; Campbell, N.L.; Niu, H.; Dickinson, C.; Ganin, A.Y.; Rosseinsky, M.J.; Khimyak, Y.Z.; et al.
Conjugated microporous poly(aryleneethynylene) networks. Angew. Chem. Int. Ed. 2007, 46, 8574. [CrossRef]
46. Mohamed, M.G.; Liu, N.Y.; EL-Mahdy, A.F.M.; Kuo, S.W. Ultrastable luminescent hybrid microporous polymers based on
polyhedral oligomeric silsesquioxane for CO2 uptake and metal ion sensing. Micropor. Mesopor. Mater. 2021, 311, 110695.
47. Mohamed, M.G.; Tsai, M.Y.; Wang, C.F.; Huang, C.F.; Danko, M.; Dai, L.; Chen, T.; Kuo, S.W. Multifunctional Polyhedral
Oligomeric Silsesquioxane (POSS) Based Hybrid Porous Materials for CO2 Uptake and Iodine Adsoprtion. Polymers 2021, 13, 221.
48. Rabbani, M.G.; El-Kaderi, H.M. Synthesis and characterization of porous benzimidazole-linked polymers and their performance
in small gas storage and selective uptake. Chem. Mater. 2012, 24, 1511–1517. [CrossRef]
49. Xiong, S.; Tang, X.; Pan, C.; Li, L.; Tang, J.; Yu, G. Carbazole-bearing porous organic polymers with a mulberry-like morphology
for efficient iodine capture. ACS Appl. Mater. Interfaces 2019, 11, 27335–27342. [CrossRef]
50. Mohamed, M.G.; EL-Mahdy, A.F.M.; Meng, T.S.; Samy, M.M.; Kuo, S.W. Multifunctional Hypercrosslinked Porous Organic
Polymers Based on Tetraphenylethene and Triphenylamine Derivatives for High-Performance Dye Adsorption and Supercapacitor.
51. Wang, S.; Tu, M.; Peng, T.; Zhang, C.; Li, T.; Hussain, I.; Wang, J.; Tan, B. Porous hypercrosslinked polymer-TiO2-graphene
composite photocatalysts for visible-light-driven CO2 conversion. Nat. Commun. 2019, 10, 676–686. [CrossRef] [PubMed]
52. Geng, T.; Zhang, W.; Zhu, Z.; Chen, G.; Ma, L.; Yea, S.; Niu, Q. A covalent triazine-based framework from tetraphenylthiophene
and 2,4,6-trichloro-1,3,5-triazine motifs for sensing o-nitrophenol and effective I2 uptake. Polym. Chem. 2018, 9, 777–784.
53. Lu, Y.; Liang, J.; Deng, S.; He, Q.; Deng, S.; Hu, Y.; Wang, D. Hypercrosslinked polymers enabled micropore-dominant N, S
Co-Doped porous carbon for ultrafast electron/ion transport supercapacitors. Nano Energy 2019, 65, 103993–104001. [CrossRef]
54. Wang, T.X.; Liang, H.P.; Anito, D.A.; Ding, X.; Han, B.H. Emerging applications of porous organic polymers in visible-light
photocatalysis. J. Mater. Chem. A 2020, 8, 7003–7034. [CrossRef]
55. Stein, A.; Wang, Z.; Fierke, M.A. Functionalization of porous carbon materials with designed pore architecture. Adv. Mater. 2009
,
56. Osman, S.; Senthil, R.A.; Pan, J.; Li, W. Highly activated porous carbon with 3D microspherical structure and hierarchical pores as
greatly enhanced cathode material for high-performance supercapacitors. J. Power Sources 2018, 391, 162–169. [CrossRef]
57. Sun, Y.; Guo, S.; Li, W.; Pan, J.; Fernandez, C.; Senthil, R.A.; Sun, X. A green and template-free synthesis process of superior
carbon material with ellipsoidal structure as enhanced material for supercapacitors. J. Power Sources 2018, 405, 80–88. [CrossRef]
58. Mohamed, M.G.; Ebrahium, S.M.; Hammam, A.S.; Kuo, S.W.; Aly, K.I. Enhanced CO2 capture in nitrogen-enriched microporous
carbons derived from Polybenzoxazines containing azobenzene and carboxylic acid units. J. Polym. Res. 2020, 27, 197. [CrossRef]
59. Khan, A.; Senthil, R.A.; Pan, J.; Osman, S.; Sun, Y.; Shu, X. A new biomass derived rod-like porous carbon from tea-waste
as inexpensive and sustainable energy material for advanced supercapacitor application. Electrochim. Acta 2020, 335, 135588.
60. Yang, V.; Senthil, R.A.; Pan, J.; Khan, A.; Osman, S.; Wang, L.; Jiang, W.; Sun, Y. Highly ordered hierarchical porous carbon derived
from biomass waste mangosteen peel as superior cathode material for high performance supercapacitor. J. Electroanal. Chem. 2019
,
61. Li, J.G.; Lee, P.Y.; Ahmed, M.M.M.; Mohamed, M.G.; Kuo, S.W. Varying the Hydrogen Bonding Strength in Phenolic/PEO-b-PLA
Blends Provides Mesoporous Carbons Having Large Accessible Pores Suitable for Energy Storage. Macromol. Chem. Phys. 2020
,
62. Shannon, M.A.; Bohn, P.W.; Elimelech, M.; Georgiadis, J.G.; Marinas, B.J.; Mayes, A.M. Science and technology for water
purification in the coming decades. Nature 2008, 452, 301–310. [CrossRef] [PubMed]
63. Kim, H.W.; Yoon, H.W.; Yoon, S.M.; Yoo, B.M.; Ahn, B.K.; Cho, Y.H.; Shin, H.J.; Yang, H.; Paik, U.; Kwon, S.; et al. Selective gas
transport through few-layered graphene and graphene oxide membranes. Science 2013, 342, 91–95. [CrossRef] [PubMed]
64. Yang, Y.; Chiang, K.; Burke, N. Porous carbon supported catalysts for energy and environmental applications: A short review.
Catal. Today 2011, 178, 197–205. [CrossRef]
65. Liu, J.; Liu, Y.; Jiang, X.; Lyu, Y. POSS-based microporous polymers: Efficient Friedel-Crafts synthesis, CO2 capture and separation
properties. Micropor. Mesopor. Mater. 2017, 250, 203–209. [CrossRef]
66. Gu, S.; Guo, J.; Huang, Q.; He, J.; Fu, Y.; Kuang, G.; Pan, C.; Yu, G. 1,3,5-Triazine-Based Microporous Polymers with Tunable
Porosities for CO2 Capture and Fluorescent Sensing. Macromolecules 2017, 50, 8512–8520. [CrossRef]
67. Ghosan, S.; Barron, A.R. The effect of KOH concentration on chemical activation of porous carbon sorbents for carbon dioxide
uptake and carbon dioxide–methane selectivity: The relative formation of micro- (<2 nm) versus meso- (>2 nm) porosity.
Sustain. Energy Fuels 2017, 1, 806.
68. EL-Mahdy, A.F.M.; Liu, T.E.; Kuo, S.W. Direct synthesis of nitrogen-doped mesoporous carbons from triazine-functionalized resol
for CO2 uptake and highly efficient removal of dyes. J. Hazard. Mater. 2020, 391, 122163. [CrossRef]