Please do not adjust margins
ChemComm
Page 4 of 5
DOI: 10.1039/C9CC09377J
COMMUNICATION
Chemical Communications
a) Radical clock experiment.
readily available, and stable alkyl tosylates. The amidation was
strongly affected by the steric interaction between alkyl
tosylates and nucleophilic Co(I) catalysts. Thus, the amidation of
sterically more congested alkyl tosylates could be accelerated
using the smaller cobalt catalyst, salcomine. The most
interesting synthetic feature of this amidation is the
regioselectivity in the reaction using alkyl ditosylates; that is,
the less-bulky alkyl tosylate moiety could be selectively
converted into the amide while keeping the bulky alkyl tosylate
moiety. Further investigations of the mechanisms and synthetic
applications of the regioselective functionalisation of polyol
derivatives are ongoing in our laboratory.
OTs
H
N
7
+
see Table 1
N
C
O
O
OMe
8
, 20%
OMe
b) Amidation of 1a using Me-cobalamin catalyst.
(
)
10 OTs
2 2
NiCl (6,6’-Me bpy) (10 mol%)
1a
H
N
Me-cobalamin (5 mol%)
Mn (2.0 equiv.)
+
tBu
(
)
10
N tBu
This work was supported by a JSPS KAKENHI (Grant Number
JP18K05106).
C
O
O
(
DMF, 30 ºC, 24 h
2
a, 82% (GC)
1.5 equiv.)
then H+
Conflicts of interest
There are no conflicts to declare.
Scheme 3 Mechanistic investigations.
O
H+
C
OTs
R
C
CoIII
C
–OTs
Notes and references
C
N
1
Mn1/2
G
S
N
2-type
OA
13283–13286; (f) X. Lu, Y. Wang, Ben Zhang, J.-J. Pi, X.-X.
Wang, T.-J. Gong, Bin Xiao and Y. Fu, J. Am. Chem. Soc., 2017,
139, 12632–12637; (g) X. Wang, G. Ma, Y. Peng, C. E. Pitsch,
B. J. Moll, T. D. Ly, X. Wang and H. Gong, J. Am. Chem. Soc.,
2018, 140, 14490–14497.
(a) K. Komeyama, R. Ohata, S. Kiguchi and I. Osaka, Chem.
Commun., 2017, 53, 6401–6404; (b) K. Komeyama, Y.
Yamahata and I. Osaka, Org. Lett., 2018, 20, 1457–1460; (c)
[Ni0]
trans-
alkylation
O
D
CoI
R
C
N
H
1
/2 Mn
O
reduction
via
C
B
2
7
OTs
R
C
N
C
[NiII]
[
NiI]
E
K. Komeyama, T. Michiyuki and I. Osaka, ACS Catal., 2019,
285–9291; (d) K. Komeyama, R. Tsunemitsu, T. Michiyuki, H.
Yoshida and I. Osaka, Molecules, 2019, 24, 1458.
9,
F
9
insertion
reduction
[NiI]
1
/2 Mn
8
9
(a) G. N. Schrauzer, E. Deutsch and R. J. Windgassen, J. Am.
Chem. Soc., 1968, 90, 2441–2442; (b) G. N. Schrauzer and E.
Deutsch, J. Am. Chem. Soc., 1969, 91, 3341–3350.
C
O
C
R
1/2 Mn(OTs)
2
A
N
(a) M. S. Ram and C. G. Riordan, J. Am. Chem. Soc., 1995, 117
,
2
365–2366. (b) M. S. Ram, C. G. Riordan, G. P. A. Yap, L.
Scheme 4 Plausible mechanism of the Ni/Co-catalysed direct reductive
amidation.
Liable-Sands, A. L. Rheingold, A. Marchaj and J. R. Norton, J.
Am. Chem. Soc., 1997, 119, 1648–1655. (c) N. A. Eckert, W. G.
Dougherty, G. P. A. Yap and C. G. Riordan, J. Am. Chem. Soc.,
2007, 129, 9286–9287.
1
2
Comprehensive Organic Functional Group Transformations II
Eds.: A. R. Katritzky, R. J. K. Taylor), Elsevier, Oxford, 2005
(a) S. Li, G. Chen, C.-G. Feng, W. Gong and J.-Q. Yu, J. Am. 10 (a) S. Ito, Y.-I. Fujiwara, E. Nakamura and M. Nakamura, Org.
(
.
Chem. Soc., 2014, 136, 5267–5270; (b) J. He, S. Li, Y. Deng, H.
Fu, B. N. Laforteza, J. E. Spangler, A. Homs and J.-Q. Yu,
Science, 2014, 343, 1216–1220; (c) R. Y. Zhu, K. Tanaka, G.-C.
Li, J. He, H.-Y. Fu, S.-H. Li and J.-Q. Yu, J. Am. Chem. Soc., 2015,
Lett., 2009, 11, 4306–4309; (b) L. Ilies, T. Matsubara, S.
Ichikawa, S. Asako and E. Nakamura, J. Am. Chem. Soc., 2014,
136, 13126–13129; (c) G. A. Molander, K. M. Traister and B.
T. O’Neill, J. Org. Chem., 2015, 80, 2907–2911; (d) J. Wang, J.
Zhao and H. Gong, Chem. Commun., 2017, 53, 10180–10183;
(e) J. Duan, Y.-F. Du, X. Pang and X.-Z. Shu, Chem. Sci., 2019,
10, 8706–8712.
137, 7067–7070; (d) J. J. Topczewski, P. J. Cabrera, N. I. Saper
and M. S. Sanford, Nature, 2016, 531, 220–224.
(a) L. Hie, N. F. Fine Nathel, T. K. Shah, E. L. Baker, X. Hong, Y.-
3
4
F. Yang, P. Liu, K. N. Houk and N. K. Garg, Nature, 2015, 524
,
11 (a) C. J. O'Donnel and S. D. Burke, J. Org. Chem., 1998, 63,
7
2
9–83; (b) G. Meng and M. Szostak, Angew. Chem. Int. Ed.,
8614–8616; (b) M. J. Martinelli, N. K. Nayyar, E. D. Moher, U.
015, 54, 14518–14522; (c) X. Li and G. Zou, J. Organomet.
P. Dhokte, J. M. Pawlak and R. Vaidyanathan, Org. Lett., 1999,
Chem., 2015, 794, 136–145.
1, 447–450; (c) A. Bouzide and G. Sauvé, Org. Lett., 2002, 4,
(a) G. Schäfer, C. Matthey and J. W. Bode, Angew. Chem. Int.
2329–2332.
Ed., 2012, 51, 9173–9175; (b) S. Zheng, D. N. Primer and G. A. 12 Stoichiometric reactions between cobalt catalysts (VB12 and
Molander, ACS Catal., 2017,
E. Serrano and R. Martin, Angew. Chem. Int. Ed., 2016, 55
1207–11211.
7
, 7957–7961.
salcomine) with alkyl tosylates (1a and 1o) were performed
(See ESI). As a result, no significant difference in reaction
rates was observed in these reactions. These results might
5
6
,
1
(a) E. C. Ashby, Acc. Chem. Res., 2002, 21, 414–421; (b) D. A.
Powell and G. C. Fu, J. Am. Chem. Soc., 2004, 126, 7788–7789;
N
indicate that the S 2-type OA is not the rate-determining step
in the amidation and that the transalkylation between the
alkyl-Co(III) and Ni(0) might be the rate-determining step. The
similar mechanistic finding was described in: S. L. Shevick, C.
Obradors, R. A. Shenvi, J. Am. Chem. Soc. 2018, 140, 12056–
12068.
(
c) D. A. Powell, T. Maki and G. C. Fu, J. Am. Chem. Soc., 2005,
27, 510–511; (d) F. González-Bobes and G. C. Fu, J. Am.
Chem. Soc., 2006, 128, 5360–5361; (e) H. Chen, X. Jia, Y. Yu,
Q. Qian and H. Gong, Angew. Chem. Int. Ed., 2017, 129
1
,
4
| J. Name., 2012, 00, 1-3
This journal is © The Royal Society of Chemistry 20xx
Please do not adjust margins