Communications
[6] a) T. Hayashi, Y. Hisaeda, Acc. Chem. Res. 2002, 35, 35 – 43; b) T.
3,7-dihydroxyphenoxazine; Molecular Probes) in the presence
of H2O2 at a stoichiometric ratio of 1:1 to produce a brightly
fluorescent and strongly absorbing reaction product. The
chemical structure and reaction path of Amplex Red are
shown in the Supporting Information (Figure S4).
Hayashi, H. Dejima, T. Matsuo, H. Sato, D. Murata, Y. Hisaeda,
J. Am. Chem. Soc. 2002, 124, 11226 – 11227; c) H. Sato, T.
Hayashi, T. Ando, Y. Hisaeda, T. Ueno, Y. Watanabe, J. Am.
Chem. Soc. 2004, 126, 436 – 437, and references therein.
[7] T. Hayashi, T. Takimura, H. Ogoshi, J. Am. Chem. Soc. 1995, 117,
11606 – 11607.
[8] Y. Hitomi, T. Hayashi, K. Wada, T. Mizutani, Y. Hisaeda, H.
Ogoshi, Angew. Chem. 2001, 113, 1132 – 1135; Angew. Chem. Int.
Ed. 2001, 40, 1098 – 1101.
[9] L. Wan, M. B. Twitchett, L. D. Eltis, A. G. Mauk, M. Smith, Proc.
Natl. Acad. Sci. USA 1998, 95, 12825 – 12831.
[10] T. Hayashi, Y. Hitomi, T. M. Ando, Y. Hisaeda, S. Kitagawa, H.
Ogoshi, J. Am. Chem. Soc. 1999, 121, 7747 – 7750.
[11] UV/Vis data for hemD1, hemD2, MbD1, and MbD2 as well as
MALDI MS spectra and details on the solid-phase coupling of
DNA with hemin, the reconstitution of apo-Mb, and the enzyme
activity assays are available in the Supporting Information.
[12] It is known that Mb reacts with H2O2 to form ferryl species that
correspond to compound II of usual peroxidases.[10] Therefore,
Mb has the potential to catalyze the oxidation of various
substrates in the presence of H2O2. Notably, the peroxidase
activity of Mb is much lower than that of other peroxidases such
as horseradish peroxidase.
[14] a) C. M. Niemeyer, T. Sano, C. L. Smith, C. R. Cantor, Nucleic
Acids Res. 1994, 22, 5530 – 5539; b) C. M. Niemeyer, L. Boldt, B.
Ceyhan, D. Blohm, Anal. Biochem. 1999, 268, 54 – 63; c) C. M.
Niemeyer, B. Ceyhan, Angew. Chem. 2001, 113, 3798 – 3801;
Angew. Chem. Int. Ed. 2001, 40, 3685 – 3688; d) M. Lovrinovic,
R. Seidel, R. Wacker, H. Schroeder, O. Seitz, M. Engelhard, R.
Goody, C. M. Niemeyer, Chem. Commun. 2003, 822 – 823; e) U.
Feldkamp, R. Wacker, W. Banzhaf, C. M. Niemeyer, ChemPhys-
Chem 2004, 5, 367 – 372; f) R. Wacker, C. M. Niemeyer, Chem-
BioChem 2004, 5, 453 – 459; g) R. Wacker, H. Schroeder, C. M.
Niemeyer, Anal. Biochem. 2004, 330, 281 – 287; h) F. Kukolka,
C. M. Niemeyer, Org. Biomol. Chem. 2004, 2, 2203 – 2206.
[15] C. M. Niemeyer, W. Bꢀrger, J. Peplies, Angew. Chem. 1998, 110,
2391 – 2395; Angew. Chem. Int. Ed. 1998, 37, 2265 – 2268.
[16] C. M. Niemeyer, J. Koehler, C. Wuerdemann, ChemBioChem
2002, 3, 242 – 245.
[17] Previous work on electron transfer reactions occurring in a
composite material prepared from myoglobin containing
double-stranded DNA-modified hemin in poly(ethylene oxide)
oligomers was carried out without characterization of the DNA-
protein conjugate: K. Muneyasu, N. Y. Kawahara, H. Ohno,
Solid State Ionics 1998, 113 – 115, 167 – 171.
[13] The structure of Amplex UltraRed (Invitrogen A36006) is
proprietary and undisclosed. However, according to information
supplied by the manufacturer, the nonfluorescent Amplex
UltraRed reacts similarly to Amplex Red reagent (10-acetyl-
2606 ꢀ 2005 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
Angew. Chem. Int. Ed. 2005, 44, 2603 –2606