Three-dimensional Structure of Nylon Oligomer Hydrolase
B. F. (2002) Science 298, 1793–1796
tion in NylBЈ-type carboxylesterase (Hyb-24) increased the Ald
hydrolytic activity by 8.2-fold, concomitant with formation of a
hydrogen bond with substrate Ald. Thus, we roughly estimate
that the energetic contribution of a hydrogen bond contributes
a ϳ10-fold difference in binding affinity (39–41). However, the
“improvements” in NylA activity caused by substitution at posi-
tion 316 are extremely modest. We suggest that that the effects
of amino acid substitution at the Acd-binding sites in NylA are
summarized as follows: (i) Even if the hydrogen bond at Acd-N7
is eliminated, close contact with the substrate and inner surface
of the protein molecule still stably holds the substrate inside the
globular protein. (ii) Because of the inflexible compact struc-
ture of Acd trapped in the catalytic cleft, amino acid substitu-
tions interacting at the uncleaved site (Acd-N7) affect the suit-
able positioning of the cleaved site (Acd-C1/Acd-N14) against
the catalytic residues, resulting in the decrease in kcat. (iii) Sub-
stitution of Cys316 to a bulky/polar residue (Glu, Asp, Asn, and
Lys), located at the entrance of the catalytic cleft, has a negative
effect on the incorporation of the substrate into the catalytic
cleft, resulting in a decrease in enzyme activity. In particular,
replacement to acidic residues (Glu and Asp) significantly
decreases the activity, probably because of an electrostatic
effect. Finally, it should be noted that plasmid-encoded NylA
from Arthrobacter and Pseudomonas and -laurolactam
hydrolase from Rhodococcus, Cupriavidus, and Sphingomonas
exhibit 98–99% overall homology, although these strains have
been isolated independently and classified as different genera.
These results may imply that the nylA-related genes have been
recently distributed among microorganisms in the course of
evolution, probably by plasmid-mediated gene transfer (4–7,
35, 36).
15. Wei, B. Q., Mikkelsen, T. S., McKinney, M. K., Lander, E. S., and Cravatt,
B. F. (2006) J. Biol. Chem. 281, 36569–36578
16. Labahn, J., Neumann, S., Bu¨ldt, G., Kula, M. R., and Granzin, J. (2002) J.
Mol. Biol. 322, 1053–1064
17. Valin˜a, A. L., Mazumder-Shivakumar, D., and Bruice, T. C. (2004) Bio-
chemistry 43, 15657–15672
18. Kobayashi, M., Goda, M., and Shimizu, S. (1998) FEBS Lett. 439, 325–328
19. Cilia, E., Fabbri, A., Uriani, M., Scialdone, G. G., and Ammendola, S.
(2005) FEBS J. 272, 4716–4724
20. Asano, Y., Fukuta, Y., Yoshida, Y., and Komeda, H. (2008) Biosci. Biotech-
nol. Biochem. 72, 2141–2150
21. Heumann, S., Eberl, A., Fischer-Colbrie, G., Pobeheim, H., Kaufmann, F.,
Ribitsch, D., Cavaco-Paulo, A., and Guebitz, G. M. (2009) Biotechnol. Bio-
eng. 102, 1003–1011
22. Yasuhira, K., Uedo, Y., Shibata, N., Negoro, S., Takeo, M., and Higuchi, Y.
(2006) Acta Crystallogr. Sect. F Struct. Biol. Cryst. Commun. 62,
1209–1211
23. Ito, W., Ishiguro, H., and Kurosawa, Y. (1991) Gene 102, 67–70
24. Otwinowski, Z., and Minor, W. (1997) Methods Enzymol. 276, 307–326
25. Weeks, C. M., Blessing, R. H., Miller, R., Mungee, R., Potter, S. A., Rappl-
eye, J., Smith, G. D., Xu, H., and Furey, W. (2002) Z. Kristallogr. 217,
686–693
26. de La Fortelle, E., and Bricogne, G. (1997) Methods Enzymol. 276,
472–494
27. McRee, D. E. (1993) Practical Protein Crystallography, Academic Press,
San Diego, CA
28. Bru¨nger, A. T., Adams, P. D., Clore, G. M., DeLano, W. L., Gros, P.,
Grosse-Kunstleve, R. W., Jiang, J. S., Kuszewski, J., Nilges, N., Pannu, N. S.,
Read, R. J., Rice, L. M., Simonson, T., and Warren, G. L. (1998) Acta
Crystallogr. D Biol. Crystallogr. 54, 905–921
29. Davis, I. W., Leaver-Fay, A., Chen, V. B., Block, J. N., Kapral, G. J., Wang,
X., Murray, L. W., Arendall, W. B., 3rd, Snoeyink, J., Richardson, J. S., and
Richardson, D. C. (2007) Nucleic Acids Res. 35, W375–W383
30. Fersht, A. R. (1984) Enzyme Structure and Mechanism (2nd Ed), pp.
389–452, W. H. Freeman and Co., New York
31. Arpigny, J. L., and Jaeger, K. E. (1999) Biochem. J. 343, 177–183
32. Zawadzke, L. E., Chen, C. C., Banerjee, S., Li, Z., Wäsch, S., Kapadia, G.,
Moult, J., and Herzberg, O. (1996) Biochemistry 35, 16475–16482
33. Minasov, G., Wang, X., and Shoichet, B. K. (2002) J. Am. Chem. Soc. 124,
5333–5340
Acknowledgment—We thank Prof. Yuji Goto (Osaka University) for
analyzing the CD spectra of NylA and its mutant enzymes.
34. Hermann, J. C., Ridder, L., Mulholland, A. J., and Ho¨ltje, H. D. (2003)
J. Am. Chem. Soc. 125, 9590–9591
REFERENCES
1. Negoro, S. (2000) Appl. Microbiol. Biotechnol. 54, 461–466
35. Okada, H., Negoro, S., Kimura, H., and Nakamura, S. (1983) Nature 306,
203–206
2. Negoro, S. (2002) Biopolymers 9, 395–415
3. Kinoshita, S., Negoro, S., Muramatsu, M., Bisaria, V. S., Sawada, S., and 36. Yasuhira, K., Uedo, Y., Takeo, M., Kato, D., and Negoro, S. (2007) J. Biosci.
Okada, H. (1977) Eur. J. Biochem. 80, 489–495
Bioeng. 104, 521–524
4. Kanagawa, K., Negoro, S., Takada, N., and Okada, H. (1989) J. Bacteriol. 37. Negoro, S., Ohki, T., Shibata, N., Mizuno, N., Wakitani, Y., Tsurukame, J.,
171, 3181–3186
Matsumoto, K., Kawamoto, I., Takeo, M., and Higuchi, Y. (2005) J. Biol.
Chem. 280, 39644–39652
5. Tsuchiya, K., Fukuyama, S., Kanzaki, N., Kanagawa, K., Negoro, S., and
Okada, H. (1989) J. Bacteriol. 171, 3187–3191
38. Negoro, S., Ohki, T., Shibata, N., Sasa, K., Hayashi, H., Nakano, H., Yasu-
hira, K., Kato, D., Takeo, M., and Higuchi, Y. (2007) J. Mol. Biol. 370,
142–156
6. Yasuhira, K., Tanaka, Y., Shibata, H., Kawashima, Y., Ohara, A., Kato, D.,
Takeo, M., and Negoro, S. (2007) Appl. Environ. Microbiol. 73, 7099–7102
7. Kato, K., Ohtsuki, K., Koda, Y., Maekawa, T., Yomo, T., Negoro, S., and
Urabe, I. (1995) Microbiology 141, 2585–2590
39. Ohki, T., Wakitani, Y., Takeo, M., Yasuhira, K., Shibata, N., Higuchi, Y.,
and Negoro, S. (2006) FEBS Lett. 580, 5054–5058
8. Schmitt, E., Panvert, M., Blanquet, S., and Mechulam, Y. (2005) Structure 40. Kawashima, Y., Ohki, T., Shibata, N., Higuchi, Y., Wakitani, Y., Matsuura,
13, 1421–1433
Y., Nakata, Y., Takeo, M., Kato, D., and Negoro, S. (2009) FEBS J. 276,
2547–2556
9. Nakamura, A., Yao, M., Chimnaronk, S., Sakai, N., and Tanaka, I. (2006)
Science 312, 1954–1958
41. Ohki, T., Shibata, N., Higuchi, Y., Kawashima, Y., Takeo, M., Kato, D., and
Negoro, S. (2009) Protein Sci. 18, 1662–1673
10. Neu, D., Lehmann, T., Elleuche, S., and Pollmann, S. (2007) FEBS J. 274,
3440–3451
42. Wagner, U. G., Petersen, E. I., Schwab, H., and Kratky, C. (2002) Protein
Sci. 11, 467–478
11. Yamada, T., Palm, C. J., Brooks, B., and Kosuge, T. (1985) Proc. Natl. Acad.
Sci. U.S.A. 82, 6522–6526
43. Silvaggi, N. R., Anderson, J. W., Brinsmade, S. R., Pratt, R. F., and Kelly, J. A.
(2003) Biochemistry 42, 1199–1208
12. Shin, S., Lee, T. H., Ha, N. C., Koo, H. M., Kim, S. Y., Lee, H. S., Kim, Y. S.,
and Oh, B. H. (2002) EMBO J. 21, 2509–2516
44. Nukaga, M., Kumar, S., Nukaga, K., Pratt, R. F., and Knox, J. R. (2004)
J. Biol. Chem. 279, 9344–9352
13. Yun, Y. S., Lee, W., Shin, S., Oh, B. H., and Choi, K. Y. (2006) J. Biol. Chem.
281, 40057–40064
45. Laskowski, R. A., McArthur, M. W., Moss, D. S., and Thornton, J. M.
(1993) J. Appl. Crystallogr. 265, 283–291
14. Bracey, M. H., Hanson, M. A., Masuda, K. R., Stevens, R. C., and Cravatt,
1248 JOURNAL OF BIOLOGICAL CHEMISTRY
VOLUME 285•NUMBER 2•JANUARY 8, 2010