12232 J. Phys. Chem. B, Vol. 114, No. 38, 2010
Abraham et al.
16.9 kJ mol-1, also supports our contention that the matrixes
of PHDMA, PEMA, or PBMA favor conformations of
PyC3NMe2 that are less conducive to exciplex formation and
attenuate motions from those conformations to the exciplex
geometry.
films are also provided. This material is available free of charge
References and Notes
(1) Duda, J. L.; Zielinski, J. M. Free-Volume Theory; Neogi, P., Ed.;
Marcel Decker, Inc.: New York, 1996.
(2) Phillips, P. J. Chem. ReV. 1990, 90, 425.
(3) Vigil, M. R.; Bravo, J.; Atvars, T. D. Z.; Baselga, J. Macromolecules
1997, 30, 4871.
6. Conclusions
We conclude that polymer chain relaxations within five
poly(alkyl methacrylate) host polymers are primarily responsible
for changes observed in the luminescent properties of two
fluorescence probes, PyH and PyC3NMe2. This finding is
contrary to what was concluded from studies of luminescence
from similar fluorophores in polyethylene matrixes,6,71 where
hole-free volume changes were the primary controlling factor.
Furthermore, the nature and relaxation rates of the side chains
of the PAMAs modulate the photophysical properties of the
guest molecules. Subtle (but reproducible) changes in plots of
fluorescence intensity versus temperature, attributed to strong
coupling between excited guest molecules and relaxations of
nearby chain segments, have allowed us to identify the onset
temperatures of some of the chain relaxation processes in the
PAMAs. The vibronic modes of the fluorescence from PyH and
the dynamic properties of the fluorescence from both probes
indicate that they prefer to reside near the polar ester side groups
(i.e., near the main polymer chains) in the PAMAs when steric
considerations permit.
(4) Gu, W.; Weiss, R. G. J. Photochem. Photobiol., C 2001, 2, 117.
(5) Frank, C. W.; Harrah, L. A. J. Chem. Phys. 1974, 61, 1526.
(6) Zimerman, O. E.; Weiss, R. G. J. Phys. Chem. A 1998, 102, 5364.
(7) (a) Kalyanasundaram, K.; Thomas, J. K. J. Am. Chem. Soc. 1977,
99, 2039. (b) Winnik, F. M. Chem. ReV. 1993, 93, 587.
(8) Yamaki, S. B.; Atvars, T. D. Z.; Weiss, R. G. Photochem. Photobiol.
Sci. 2002, 1, 649.
(9) (a) Cui, C.; Weiss, R. G. J. Am. Chem. Soc. 1993, 115, 9820. (b)
Tung, C.-H.; Yuan, Z.-Y.; Wu, L.-Z.; Weiss, R. G. J. Org. Chem. 1999,
64, 5156.
(10) Bhattacharjee, U.; Chesta, C. A.; Weiss, R. G. Photochem.
Photobiol. Sci. 2004, 3, 287.
(11) Gu, W.; Bi, S.; Weiss, R. G. Photochem. Photobiol. Sci. 2002, 1,
52.
(12) Farid, S.; Martic, P. A.; Daly, R. C.; Thompson, D. R.; Specht,
D. P.; Hartman, S. E.; Williams, J. L. R. Pure Appl. Chem. 1979, 51, 241.
(13) Guillet, J. Polymer Photophysics and Photochemistry; Cambridge
University Press: New York, 1985.
(14) (a) Beiner, M.; Huth, H. Nat. Mater. 2003, 2, 595. (b) Ngai, K. L.;
Beiner, M. Macromolecules 2004, 37, 8123.
(15) McCrum, N. G.; Read, B. E.; Williams, G. Anelastic and dielectric
effects in polymeric solids; Wiley: London, 1976.
(16) Mikhailov, G. P.; Borisova, T. I. SoV. Phys. Tech. Phys. 1958, 3,
120.
The dynamic PyH excimer formation observed in the solid
and melted states of PHDMA suggests that its cavity walls are
“soft”, permitting some translational diffusion of PyH molecules
on time scales compared to the excited singlet lifetimes. The
more rigid polymer side chains in the other four PAMAs restrict
translational diffusion and dynamic excimer formation much
more. Intramolecular exciplex emission from PyC3NMe2
indicates that the branched side chains of PIBMA and PCHMA
afford guest sites that either impose conformations on PyC3NMe2
molecules that either are close to the exciplex geometry or
permit rapid conformational changes leading to such conforma-
tions. The more flexible side chains of the other three PAMAs
appear to support more extended conformations of PyC3NMe2
or slow attainment of the exciplex geometry from them.
Future studies in the PAMAs are planned to investigate this
hypothesis further by monitoring the temperature and phase
dependence of the fluorescence of probes structurally similar
to PyC3NMe2, but with one of the amino methyl groups
replaced by a longer alkyl chain. In addition, we are exploring
in the same PAMAs whether selected photochemical reactions
respond primarily to relaxation of the polymer chains (as was
found for the photophysical processes investigated here) or to
free volume within the reaction cavities.
(17) Weiss, R. G.; Ramamurthy, V.; Hammond, G. S. Acc. Chem. Res.
1993, 26, 530.
(18) Xu, J.; Weiss, R. G. Photochem. Photobiol. Sci. 2005, 4, 348.
(19) Birks, J. B.; Kazzaz, A. A.; King, T. A. Proc. R. Soc. London A
1966, 291, 556.
(20) Anderson, V. C.; Craig, B. B.; Weiss, R. G. J. Am. Chem. Soc.
1982, 104, 2972.
(21) Sulsky, R.; Demers, J. P. Tetrahedron Lett. 1989, 30, 31.
(22) Prado, E. A.; Yamaki, S. B.; Atvars, T. D. Z.; Zimerman, O. E.;
Weiss, R. G. J. Phys. Chem. B 2000, 104, 5905.
(23) Hempel, E.; Huth, H.; Beiner, M. Thermochim. Acta 2003, 403,
105.
(24) Rogers, S.; Mandelkern, L. J. Phys. Chem. 1957, 61, 985.
(25) Lal, J.; Trick, G. S. J. Polym. Sci., Part A: Polym. Chem. 1964, 2,
4559.
(26) Talhavini, M.; Atvars, T. D. Z.; Cui, C.; Weiss, R. G. Polymer
1996, 37, 4365.
(27) Nakajima, A. Bull. Chem. Soc. Jpn. 1971, 44, 3272.
(28) Waris, R.; Acree, W. E.; Street, K. W. Analytst 1988, 113, 1465.
(29) Christoff, M.; Atvars, T. D. Z. Macromolecules 1999, 32, 6093.
(30) Somersall, A. C.; Dan, E.; Guillet, J. E. Macromolecules 1974, 7,
233.
(31) (a) Zhou, H.; Wilkes, G. L. Macromolecules 1997, 30, 2412. (b)
Fakhraai, Z.; Forrest, J. A. Science 2008, 319, 600.
(32) Lupton, J. M.; Klein, J. Chem. Phys. Lett. 2002, 363, 204.
(33) Asano-Someda, M.; Kaizu, Y. J. Photochem. Photobiol. A 2001,
139, 161.
(34) Wittmeyer, S. A.; Topp, M. R. J. Phys. Chem. 1993, 97, 8718.
(35) Koenig, J. L. Spectroscopy of Polymers; American Chemical
Society: Washington, D.C., 1999.
(36) Avis, P.; Porter, G. Faraday Trans. 1974, 34, 1057.
(37) Kawski, A.; Weyna, I.; Kojro, Z.; Kubick, A. Z. Naturforsch. 1983,
38a, 1103.
Acknowledgment. We thank the National Science Founda-
tion for its support of this research and Professor J. Kerry
Thomas, University of Notre Dame, for useful discussions
concerning the pyrene hot band. We are exceedingly grateful
to Drs. Steven J. Pas and Anita J. Hill of CSIRO Materials
Science & Engineering, Australia, for free volume measurements
of the poly(alkyl methacrylate)s at different temperatures.
(38) Swinnen, A. M.; Van der Auweraer, M.; De Schryver, F. C.;
Nakatani, K.; Okada, T.; Mataga, N. J. Am. Chem. Soc. 1987, 109, 321.
(39) Katusˇin-Razˇem, B.; Wong, M.; Thomas, J. K. J. Am. Chem. Soc.
1978, 100, 1679.
(40) Benten, H.; Ohkita, H.; Ito, S.; Yamamoto, M.; Tohda, Y.; Tani,
K. J. Phys. Chem. B 2004, 108, 16457.
(41) Anderson, V. C.; Craig, B. B.; Weiss, R. G. J. Phys. Chem. 1982,
Supporting Information Available: Details of derivations
of equations, material sources, synthetic procedures of PyC3NMe2
and characterizations, purification methods of PAMAs and
instrumentation details. Additional fluorescence spectra of PyH
and PyC3NMe2, lifetime data of PyH in PAMAs, and integrated
florescence intensities versus temperature plots from duplicate
86, 4642.
(42) Rujkorakarn, R.; Tanaka, F. J. Mol. Graphics Modell. 2009, 27,
571.
(43) Birks, J. B.; Lumb, M. D.; Munro, I. H. Proc. R. Soc. London A
1964, 280, 289.
(44) Vanderauwera, P.; DeSchryver, F. C.; Weller, A.; Winnik, M. A.;
Zachariasse, K. A. J. Phys. Chem. 1984, 88, 2964.