Please do not adjust margins
ChemComm
Page 3 of 4
DOI: 10.1039/C5CC08714G
Journal Name
ARTICLE
Notes and references
1
(a) N. A. Owston, A. J. Parker and J. M. J. Williams, Org. Lett.,
2007, 9, 3599; (b) C. L. Allen, C. Burel and J. M. J. Williams,
Tetrahedron Lett., 2010, 51, 2724; (c) S. K. Sharma, S. D.
Bishopp, C. L. Allen, R. Lawrence, M. J. Bamford, A. A. Lapkin,
P. Plucinski, R. J. Watson and J. M. J. Williams, Tetrahedron
Lett., 2011, 52, 4252; (d) N. A. Owston, A. J. Parker and J. M.
J. Williams, Org. Lett., 2007,
A. J. Blacker, J. Lynch, S. P. Marsden, P. Plucinski, R. J.
Watson and J. M. J. Williams, Tetrahedron Lett., 2010, 51
9, 73; (e) O. Saidi, M. J. Bamford,
,
Scheme 2 Plausible mechanisms for the hydration of nitriles
5804; (f) H. Fujiwara, Y. Ogasawara, K. Yamaguchi and N.
Mizuno, Angew. Chem. Int. Ed., 2007, 46, 5202; (g) H.
Fujiwara, Y. Ogasawara, M. Kotani, K. Yamaguchi and N.
Mizuno, Chem. Asian J., 2008, 3, 1715; (h) R. S. Ramón, J.
Bosson, S. Díez-González, N. Marion and S. P. Nolan, J. Org.
Chem., 2010, 75, 1197.
When NEt2OH is employed, the oxygen could act as
nucleophile and in subsequent steps the reaction could follow
a radical pathway15,16 or a rearrangement facilitated by the
metal (scheme 2).2
2
3
C. L. Allen, R. Lawrence, L. Emmett and J. M. J. Williams, Adv.
Synth. Catal., 2011, 353, 3262
Intrigued by the nature of this transformation NMR
experiments were carried out to attempt to detect
intermediates which could give some information about the
mechanism. Unfortunately, only the rapid appearance of the
final amide was observed (see ESI). In order to study if water
was indeed acting as nucleophile, the reaction was performed
in the presence of H2O18 (scheme 3).
(a) C. E. Mabermann, in Encyclopedia of Chemical
Technology, ed. J. I. Kroschwitz, Wiley, New York, 1991, vol.
1, pp. 251–266; (b) D. Lipp, in Encyclopedia of Chemical
Technology, ed. J. I. Kroschwitz, Wiley, New York, 1991, vol.
1, pp. 266–287; (c) R. Opsahl, in Encyclopedia of Chemical
Technology, ed. J. I. Kroschwitz, Wiley, New York, 1991, vol.
2, pp. 346–356.; (d) C. Singh, V. Kumar, U. Sharma, N. Kumar
and B. Singh, Curr. Org. Synth., 2013, 10, 241; (e) T. Tu, Z.
Wang, Z. Liu, X. Feng and Q. Wang, Green Chem., 2012, 14
,
921; (f) R. García-Álvarez, P. Crochet and V. Cadierno, Green
Chem., 2013, 15, 46.
(a) J. N. Moorthy and N. Singhal, J. Org. Chem., 2005, 70,
1926; (b) A. R. Katritzky, B. Pilarski and L. Urogdi, Synthesis,
1989, 949.
(a) K. Yamaguchi, M. Matsushita and N. Mizuno, Angew.
Chem. Int. Ed., 2004, 43, 1576; (b) A. Matsuoka, T. Isogawa,
Y. Morioka, B. R. Knappett, A. E. H. Wheatley, S. Saito and H.
4
5
Scheme 3 Hydration of benzonitrile using H2O18
Naka, RSC Adv., 2015,
Zablocka, P. Crochet, C. Duhayon, J.-P. Majoral and
5, 12152; (c) R. García-Álvarez, M.
V
The analysis of the reaction crude by mass spectrometry did
not show the incorporation of 18O into the final amide (see
ESI). This evidence indicates that in the hydration pathway
water is not acting as nucleophile. These results will support
the nucleophilic attack of the NEt2OH followed by a radical11,12
or rearrangement pathway facilitated by the Lewis acid.2,14
Further studies to uncover the more plausible pathway are still
undergoing.
Cadierno, Green Chem., 2013, 15, 2447; (d) E. Tomás-
Mendivil, F. J. Suárez, J. Díez and V. Cadierno, Chem.
Commun., 2014, 50, 9661; (e) R. García-Álvarez, S. E. García-
Garrido, J. Díez, P. Crochet and V. Cadierno, Eur. J. Inorg.
Chem., 2012, 4218
R. S. Ramón, N. Marion and S. P. Nolan, Chem. Eur. J., 2009,
15, 8695.
A. Goto, K. Endo and S. Saito, Angew. Chem. Int. Ed., 2008,
47, 3607.
6
7
8
(a) C. Battilocchio, J. M. Hawkins and S. V. Ley, Org. Lett.
2014, 16, 1060; (b) H. J. Young and L. R. Haefele, Ing. Eng.
Chem. Prod. Res. Develop., 1972, 11, 365
Conclusions
9
(a) V. Y. Kukushkin and A. J. L. Pombeiro, Inorg. Chim. Acta,
2005, 358, 1; (b) T. J. Ahmed, S. M. M. Knapp and D. R. Tyler,
Coord. Chem. Rev., 2011, 255, 949; (c) C. L. Allen and J. M. J.
Williams, Chem. Soc. Rev., 2011, 40, 3405
In summary, we report a new methodology for the hydration
of nitriles. The use of copper as Lewis acid allows the synthesis
of amides in water as a solvent at low temperatures and short
reaction times. The amides were obtained in excellent yields
for a broad range of nitriles making this methodology very
efficient and general, solving the main problems associated to
the methods reported until now.
10 (a) E. L. Downs and D. R. Tyler, Coord. Chem. Rev., 2014, 280,
28; (b) K. Kawai, H. Kawakami, T. Narushima and T.
Yonezawa, J. Nanopart. Res., 2015, 17, 60
11 E. S. Kim, H. S. Kim and J. N. Kim, Tetrahedron Lett., 2009, 50
2973.
12 A. Kiss and Z. Hell, Tetrahedron Lett., 2011, 52, 6021.
,
13 (a) S. Davulcu, C. L. Allen, K. Milne and J. M. J. Williams,
Chem CatChem, 2013, , 435; (b) S. K. Sharma, J. Lynch, A. M.
Sobolewska, P. Plucinski, R. J. Watson and J. M. J. Williams,
Catal. Sci. Technol., 2013, , 85.
14 R. M. Srivastava, M. C. Pereira, W. W. M. Faustino, K.
Coutinho, J. V. dos Anjos and S. J. de Melo, Monastsh Chem.,
2009, 140, 1319.
Acknowledgements
5
We are grateful to the EPSRC for funding through the UK
Catalysis Hub.
3
This journal is © The Royal Society of Chemistry 20xx
J. Name., 2013, 00, 1-3 | 3
Please do not adjust margins