C O M M U N I C A T I O N S
find future use in biological applications, such as protein kinase
activity detection.14
Acknowledgment. This work was supported by the Centre
National de la Recherche Scientifique, the Universite´ Joseph Fourier
de Grenoble, and the Institut Universitaire de France.
Supporting Information Available: Detailed synthetic and kinetic
assays procedures, ES-MS spectrum of compound 1 (PDF). This mater-
References
(1) (a) Wiskur, S. L.; Ait-Haddou, H.; Lavigne, J. J.; Anslyn, E. V. Acc. Chem.
Res. 2001, 34, 963-972. (b) Sessler, J. L.; Davis, J. M. Acc. Chem. Res.
2001, 34, 989-997. (c) Beer, P. D.; Gale, P. A. Angew. Chem., Int. Ed.
2001, 40, 486-516. (d) Anslyn, E. V. J. Org. Chem. 2007, 72, 687-699.
(2) Moreno-Bondi, M.; Benito-Pen˜a, E. In Optical Chemical Sensors; Baldini,
F., Chester, A. N., Homola, J., Martellucci, S., Eds.; Springer: The
Netherlands, 2006; Vol. 224, pp 323-352.
(3) For examples of peptide-based esterase mimics, see: (a) Esposito, A.;
Delort, E.; Lagnoux, D.; Djojo, F.; Reymond, J.-L. Angew. Chem., Int.
Ed. 2003, 42, 1381-1383. (b) Lagnoux, D.; Delort, E.; Douat-Casassus,
C.; Esposito, A.; Reymond, J.-L. Chem.sEur. J. 2004, 10, 1215-1226.
(c) Douat-Casassus, C.; Darbre, T.; Reymond, J.-L. J. Am. Chem. Soc.
2004, 126, 7817-7826. (d) Clouet, A.; Darbre, T.; Reymond, J.-L. AdV.
Synth. Catal. 2004, 346, 1195-1204. (e) Delort, E.; Darbre, T.; Reymond,
J.-L. J. Am. Chem. Soc. 2004, 126, 15642-15643. (f) Delort, E.; Nguyen-
Trung, N.-Q.; Darbre, T.; Reymond, J.-L. J. Org. Chem. 2006, 71, 4468-
4480. (g) Broo, K. S.; Brive, L.; Ahlberg, P.; Baltzer, L. J. Am. Chem.
Soc. 1997, 119, 11362-11372. (h) Kerstin, S.; Nilsson, H.; Nilsson, J.;
Baltzer, L. J. Am. Chem. Soc. 1998, 120, 10287-10295. (i) Baltzer, L.
K.; Broo, S.; Nilsson, H.; Nilsson, J. Bioorg. Med. Chem. 1999, 7, 83-
91. (j) Nilsson, J.; Baltzer, L. Chem.sEur. J. 2000, 6, 2214-2220. (k)
Andersson, L. K.; Caspersson, M.; Baltzer, L. Chem.sEur. J. 2002, 8,
3687-3689. (l) Bolon, D. L.; Mayo, S. L. Proc. Natl. Acad. Sci. U.S.A.
2001, 98, 14274-14279. (m) Wei, Y.; Hecht, M. H. Protein Eng. Des.
2004, 17, 67-75. (n) Nicoll, A. J.; Allemann, R. K. Org. Biomol. Chem.
2004, 2, 2175-2180. (o) Baumeister, B.; Sakai, N.; Matile, S. Org. Lett.
2001, 3, 4229-4232. (p) Som, A.; Sakai, N.; Matile, S. Bioorg. Med.
Chem. 2003, 11, 1363-1369.
Figure 1. (A) Time plot formation of 3 from the hydrolysis of ester 2
(200 µM) in the presence of catalytic peptide 1 (red) or 4-methylimidazole
(blue), and background reaction (green). (B) Lineweaver-Burk plot of the
hydrolysis of ester 2 with catalytic peptide 1. (C) Dixon plots of the activity
inhibition of peptide 1 by Pi (dark green), citric acid (light green), IP3 (dark
blue), AMP (light blue), ATP (yellow), and ADP (red). (D) Hill plot of the
activity inhibition of catalytic peptide 1 by ADP. General conditions: 5
µM catalyst 1 or 4(5)-methylimidazole, 24 °C, 20 mM Tris buffer pH 7.4.
(4) The presence of two prolylglycine sequences as â type II turn inducers
constrains the peptide conformation into an antiparallel â-sheet. For a
review on this family of decapeptidic scaffold, see: Singh, Y.; Dolphin,
G.; Razkin, J.; Dumy P. ChemBioChem 2006, 7, 1298-1314.
(5) A similar design approach has been employed by Matile and co-workers.
See refs 3o and 3p.
(6) Wolfbeis, O. S.; Koller, E. Anal. Biochem. 1983, 129, 365-370.
(7) Garanger, E.; Boturyn, D.; Renaudet, O.; Defrancq, E.; Dumy, P. J. Org.
Chem. 2006, 71, 2402-2410.
(8) The three-dimensional model was built without energy minimization from
a previously reported X-ray structure of a similar cyclic peptide. The
original p-nitrobenzyl residues were simply replaced with lysine and
histidine side chains. Some hydrogen atoms have been omitted for clarity.
Peluso, S.; Ruckle, T.; Lehmann, C.; Mutter, M.; Peggion, C.; Crisma,
M. ChemBioChem 2001, 2, 432-437.
(9) Segel, I. H. Enzyme Kinetics: BehaVior and Analysis of Rapid Equilibrium
and Steady-State Enzyme Systems; Wiley: New York, 1993; pp 465-
504.
(10) Peptide 1 did not catalyze the hydrolysis of ADP in the conditions used
in this study.
Figure 2. (A) Fluorescence versus time plot (λexc ) 460 nm, λem ) 530
nm) showing the formation of 3 from the hydrolysis of ester 2 in the
presence of catalytic peptide 1 and ADP (red), ATP (yellow), AMP (light
blue), citric acid (light green), IP3 (dark blue), or Pi (dark green). RFU )
relative fluorescence unit.12 (B) Kinetic assay wells. From top to bottom:
ATP, ADP, AMP, Pi, IP3, and citric acid. General conditions: 800 µM
inhibitor, 5 µM peptide 1, and 200 µM ester 2 in 20 mM Tris buffer pH
7.4, 24 °C.
(11) Parameters were calculated using the Hill equation: log [V/(Vm - V] )
-nH log [inhibitor] + log KD, where nH, Vm, and KD are the Hill coefficient,
the maximum velocity, and the global dissociation constant, respectively.
(12) The curve shift on the y-axis at t ) 0 is related to the time delay that
occurred between the sample preparation and the beginning of the
spectroscopic measurement.
ADP containing solution remains completely uncolored, even after
24 h reaction (Figure 2A,B).
This study shows that a cationic esterase mimic (1), which is
responsible for the catalytic hydrolysis of a negatively charged
fluorogenic ester (2), displays different inhibition behaviors in the
presence of similar anionic metabolites in water and at physiological
pH. On the contrary of the other negatively charged inhibitors tested,
ADP strongly slowed down the formation of the fluorescent product
(3) by virtue of cooperative inhibition, hence allowing its spectro-
scopic or visual detection. This result is remarkable since such ADP
sensors, with good selectivity against ATP in particular, are poorly
represented in the literature.13 Our sensor or its derivatives may
(13) For nice examples, see: (a) Aguilar, J. A.; Garcia-Espana, E.; Guerrero,
J. A.; Luis, S. V.; Llinares, J. M.; Miravet, J. F.; Ramirez, J. A.; Soriano,
C. Chem. Commun. 1995, 2237-2239. (b) Brune, M.; Corrie, J. E. T.;
Webb, M. R. Biochemistry 2001, 40, 5087-5094. (c) Butterfield, S. M.;
Waters, M. L. J. Am. Chem. Soc. 2003, 125, 9580-9581. (d) Srinivasan,
J.; Cload, S. T.; Hamaguchi, N.; Kurz, J.; Keene, S.; Kurz, M.; Boomer,
R. M.; Blanchard, J.; Epstein, D.; Wilson, C.; Diener, J. L. Chem. Biol.
2004, 11, 499-508. (e) Litvinchuk, S.; Sorde´, N.; Matile, S. J. Am. Chem.
Soc. 2005, 127, 9316-9317.
(14) (a) Das, G.; Talukdar, P.; Matile, S. Science 2002, 298, 1600-1602. (b)
Goddard, J.-P.; Reymond, J.-L. Trends Biotechnol. 2004, 22, 363-370.
JA070734C
9
J. AM. CHEM. SOC. VOL. 129, NO. 16, 2007 4885