Zeitschrift für anorganische und allgemeine Chemie
10.1002/zaac.202000315
ARTICLE
[
[
10]
11]
H. Reinsch, N. Stock, Dalton Trans. 2017, 46, 8339-8349.
steel multiclave equipped with 24 Teflon reactors with a maximum
solvent volume of 2 mL each. 260 syntheses with 1,2,4,5-
tetrahydroxybenzene (H THB) were performed using a steel
4
multiclave equipped with 48 Teflon reactors with a maximum
volume of 400 µL each. Acetic acid to HCl ratios were tested fixing
the solvent volume at 1 mL and 200 µL, respectively. During the
optimization process, i. e. by varying the chemical and process
parameters, the optimized synthesis conditions were found using
S. Leubner, R. Stäglich, J. Franke, J. Jacobsen, J. Gosch, R. Siegel, H.
Reinsch, G. Maurin, J. Senker, P.G. Yot, N. Stock, Chem. – Eur. J. 2020,
26, 3877-3883.
[
[
[
12]
13]
14]
J. Jacobsen, L. Wegner, H. Reinsch, N. Stock, Dalton Trans. 2020, 49,
11396-11402.
Z. Hu, Y. Peng, Z. Kang, Y. Qian, D. Zhao, Inorg. Chem. 2015, 54,
4862-4868.
G. Zahn, H.A. Schulze, J. Lippke, S. König, U. Sazama, M. Fröba, P.
Behrens, Microporous Mesoporous Mater. 2015, 203, 186-194.
S. Leubner, H. Zhao, N. Van Velthoven, M. Henrion, H. Reinsch, D.E.
De Vos, U. Kolb, N. Stock, Angew. Chem. Int. Ed. 2019, 58, 10995-
[15]
H
2
DHBQ and H
and 200 °C. The highest crystallinity was observed employing
THB as the linker molecule and a reaction temperature of
20 °C. For the Hf-based CP only the linker molecule H THB and
4
THB. The temperature was varied between 120
11000.
[
16]
G. Kickelbick, U. Schubert, Chem. Ber. 1997, 130, 473-478.
P. Ji, K. Manna, Z. Lin, X. Feng, A. Urban, Y. Song, W. Lin, J. Am.
Chem. Soc. 2017, 139, 7004-7011.
S. Waitschat, H. Reinsch, M. Arpacioglu, N. Stock, CrystEngComm
2018, 20, 5108-5111.
I.L. Malaestean, M.K. Alıcı, C. Besson, A. Ellern, P. Kögerler,
CrystEngComm 2013, 16, 43-46.
S. Waitschat, H. Reinsch, N. Stock, Chem. Commun. 2016, 52, 12698-
12701.
V. Guillerm, F. Ragon, M. Dan-Hardi, T. Devic, M. Vishnuvarthan, B.
Campo, A. Vimont, G. Clet, Q. Yang, G. Maurin, G. Férey, A. Vittadini,
S. Gross, C. Serre, Angew. Chem. Int. Ed. 2012, 51, 9267-9271.
T. Rhauderwiek, H. Zhao, P. Hirschle, M. Döblinger, B. Bueken, H.
Reinsch, D.D. Vos, S. Wuttke, U. Kolb, N. Stock, Chem. Sci. 2018, 9,
H
4
[17]
1
4
[
[
[
[
18]
19]
20]
21]
a reaction temperature of 120 °C were used. The optimized
synthesis conditions are given below. For the syntheses with
H THB reaction “scale-up” to 1 mL reaction volume was
4
performed. An overview of the high-throughput syntheses is given
in the ESI, section S4.
Synthesis of [Zr
75 µmol) H DHBQ and 11.6 mg (50 µmol) ZrCl
ml Teflon insert and mixed with 875 µl glacial acetic acid and
2
(OH)
2
(C
6
H O
2 4
)
3
] with H
2
DHBQ: 10.5 mg
[
[
22]
23]
(
2
4
were added to a
5467-5478.
2
1
2
1
L. Cooper, N. Guillou, C. Martineau, E. Elkaim, F. Taulelle, C. Serre, T.
Devic, Eur. J. Inorg. Chem. 2014, 6281-6289.
G. Mouchaham, L. Cooper, N. Guillou, C. Martineau, E. Elkaïm, S.
Bourrelly, P.L. Llewellyn, C. Allain, G. Clavier, C. Serre, T. Devic,
Angew. Chem. Int. Ed. 2015, 54, 13297-13301.
75 µl HCl (37%). The reactor was closed, heated for 70 h at
00 °C and thereafter cooled down to room temperature within
0 h. The dark grey-brown product was filtered off and washed
[24]
with methanol four times.
Synthesis of [Zr (OH)
THB and 35 mg (150 µmol) ZrCl
[
[
[
25]
26]
27]
J. Park, A.C. Hinckley, Z. Huang, D. Feng, A.A. Yakovenko, M. Lee, S.
Chen, X. Zou, Z. Bao, J. Am. Chem. Soc. 2018, 140, 14533-14537.
B.F. Abrahams, A.M. Bond, T.H. Le, L.J. McCormick, A. Nafady, R.
Robson, N. Vo, Chem. Commun. 2012, 48, 11422.
M. Atzori, S. Benmansour, G. Mínguez Espallargas, M. Clemente-León,
A. Abhervé, P. Gómez-Claramunt, E. Coronado, F. Artizzu, E. Sessini,
P. Deplano, A. Serpe, M.L. Mercuri, C.J. Gómez García, Inorg. Chem.
2
2
(C
6
H O
2 4
)
3
]
with
H
4
THB: 21.3 mg
were placed in a
(
150 µmol) H
4
4
2 ml Teflon insert and mixed with 582 µl glacial acetic acid and
418 µl HCl (37%). The reactor was sealed, heated for 70 h at
120 °C and thereafter cooled down to room temperature within
10 h. The dark grey-brown was filtered off and washed with
2013, 52, 10031-10040.
[
28]
B.F. Abrahams, J. Coleiro, K. Ha, B.F. Hoskins, S.D. Orchard, R.
Robson, J. Chem. Soc. Dalton Trans. 2002, 1586-1594.
C.J. Kingsbury, B.F. Abrahams, D.M. D’Alessandro, T.A. Hudson, R.
Murase, R. Robson, K.F. White, Cryst. Growth Des. 2017, 17, 1465-
1470.
G. Mouchaham, N. Roques, C. Duhayon, I. Imaz, J.-P. Sutter, New J.
Chem. 2013, 37, 3476-3487.
I. Imaz, G. Mouchaham, N. Roques, S. Brandès, J.-P. Sutter, Inorg.
Chem. 2013, 52, 11237-11243.
B.F. Abrahams, A.D. Dharma, B. Dyett, T.A. Hudson, H. Maynard-
Casely, C.J. Kingsbury, L.J. McCormick, R. Robson, A.L. Sutton, K.F.
White, Dalton Trans. 2016, 45, 1339-1344.
A. Coelho, TOPAS Academic, Coelho Software, 2007.
A. Altomare, M. Camalli, C. Cuocci, C. Giacovazzo, A. Moliterni, R.
Rizzi, J. Appl. Crystallogr. 2009, 42, 1197-1202.
methanol four times (yield: 19 mg).
Synthesis of [Hf (OH) (C ]: 42 mg (300 µmol) H
8 mg (150 µmol) HfCl were added to a 2 ml Teflon inlet and
[29]
2
2
6
H
2
O )
4 3
4
THB and
[
[
[
30]
31]
32]
4
4
mixed with 666 µl glacial acetic acid and 334 µl HCl (37%). The
reactor was closed, heated for 70 h at 120 °C and thereafter
cooled down to room temperature within 10 h. The dark grey-
brown product was filtered off and washed with acetone four times
[
[
33]
34]
(
yield: 24 mg).
[
[
35]
36]
Materials Studios, Accelrys Inc., San Diego, 2009.
C. Scholes, S. Kentish, G. Stevens, Recent Pat. Chem. Eng. 2008, 1,
52-66.
Keywords: metal organic frameworks (MOFs); zirconium;
hafnium; crystal structure; dihydroxybenzoquinone
[
[
[
37]
38]
39]
M. Ahmed, Z.H. Khan, Spectrochim. Acta. A. Mol. Biomol. Spectrosc.
2000, 56, 965-981.
[
[
1]
2]
Q. Wang, D. Astruc, Chem. Rev. 2020, 120, 1438-1511.
S.R. Batten, N.R. Champness, X.-M. Chen, J. Garcia-Martinez, S.
Kitagawa, L. Öhrström, M. O’Keeffe, M.P. Suh, J. Reedijk, Pure Appl.
Chem. 2013, 85, 1715-1724.
H. Wu, Y.S. Chua, V. Krungleviciute, M. Tyagi, P. Chen, T. Yildirim, W.
Zhou, J. Am. Chem. Soc. 2013, 135, 10525-10532.
S. Leubner, V.E. Bengtsson, K. Synnatschke, J. Gosch, A. Koch, H.
Reinsch, H. Xu, C. Backes, X. Zou, N. Stock, J. Am. Chem. Soc. 2020,
[
3]
B. Li, H.-M. Wen, W. Zhou, B. Chen, J. Phys. Chem. Lett. 2014, 5, 3468-
1
42, 15995-16000.
O.V. Gutov, M.G. Hevia, E.C. Escudero-Adán, A. Shafir, Inorg. Chem.
015, 54, 8396-8400.
3479.
[40]
[41]
[42]
[
[
4]
5]
L. Jiao, Y. Wang, H.-L. Jiang, Q. Xu, Adv. Mater. 2018, 30, 1703663.
P. Horcajada, C. Serre, M. Vallet‐Regí, M. Sebban, F. Taulelle, G.
Férey, Angew. Chem. Int. Ed. 2006, 45, 5974-5978.
2
S.M. Shaikh, P.M. Usov, J. Zhu, M. Cai, J. Alatis, A.J. Morris, Inorg.
Chem. 2019, 58, 5145-5153.
N. Stock, Microporous Mesoporous Mater. 2010, 129, 287-295.
[
[
6]
7]
J. An, S.J. Geib, N.L. Rosi, J. Am. Chem. Soc. 2009, 131, 8376-8377.
Y. Bai, Y. Dou, L.-H. Xie, W. Rutledge, J.-R. Li, H.-C. Zhou, Chem. Soc.
Rev. 2016, 45, 2327-2367.
[
[
8]
9]
C. Allègre, G. Manhès, É. Lewin, Earth Planet. Sci. Lett. 2001, 185, 49-
69.
H. Reinsch, Eur. J. Inorg. Chem. 2016, 2016, 4290-4299.
This article is protected by copyright. All rights reserved.