Xia and Huang
JOCArticle
in heterocyclic chemistry.4 Therefore, many methods exist for
the organic synthesis of pyrrole derivatives. The classical
methods for pyrrole synthesis include the Paal-Knorr con-
densation reaction,5 Knorr reaction,6 Hantzsch reaction,7 and
Barton-Zard reaction.8 Recently, the development of metal-
catalyzed one-, two-, or multi-component reactions for synthe-
sis of highly substituted pyrroles has attracted tremendous
interest.9
SCHEME 1
Over the past decade, organic chemists have witnessed a
significant advance in the π-acidic transition metal-catalyzed
cyclization of unsaturated precursors for the synthesis of carbo-
and heterocycles,10 and new methodologies based on plati-
num and gold catalysis have grown into a major field of exper-
imental11 as well as theoretical research.12 In this respect, a
variety of methods for the synthesis of pyrroles are described
by using gold catalysts,13 while the employment of platinum
complexes is rare.14 The recent Schmidt reaction of homo-
propargyl azides from the Toste group and the Hiroya group
represents a rare example of pyrrole synthesis in which both
Au and Pt complexes are capable catalysts (Scheme 1).15a,b
Despite the convenient synthesis of substituted pyrrole by
both methods, it is interesting to find that different reaction
conditions were employed in the reactions. While Toste et al.
found that the combination of (dppm)Au2Cl2 with AgSbF6
could efficiently promote the conversion of homopropargyl
azide into substituted pyrrole in dichloromethane solution
(Condition A), the efficiency of this transformation was more
condition-dependent in the Pt-catalyzed reaction of Hiroya
and co-workers. Namely, the PtCl4-catalyzed reactions were
rather sluggish in 1,2-dichloroethane solution. Interestingly,
great improvement of the reaction rate was observed if the
PtCl4 catalyst was stirred in ethanol solution for 1 h at 50 °C
before adding the substrate (Condition B). Different catalyt-
ic activities of Au and Pt complexes have been observed in
many reactions, and the understanding of such difference from
a mechanistic point of view is still highly desirable.16
(4) (a) Fan, H.; Peng, P.; Hamann, M. T.; Hu, J.-F. Chem. Rev. 2008, 108,
€
264. (b) Morris, C. J.; Phillips, A. J. Nat. Prod. Rep. 2008, 25, 95. (c) Furstner,
A. Angew. Chem., Int. Ed. 2003, 42, 3582. (d) Hoffmann, H.; Lindel, T.
Synthesis 2003, 1753.
(5) Paal, C. Chem. Ber. 1885, 18, 367.
(6) Knorr, L. Chem. Ber 1884, 17, 1635.
(7) Hantzsch, A. Ber. Dtsch. Chem. Ges. 1890, 23, 1474.
(8) Barton, D. H. R.; Kervagoret, J.; Zard, S. Z. Tetrahedron 1990, 46, 7587.
(9) For recent examples, see: (a) Rakshit, S.; Patureau, F. W.; Glorius, F.
J. Am. Chem. Soc. 2010, 132, 9585. (b) Maiti, S.; Biswas, S.; Jana, U. J. Org.
Chem. 2010, 75, 1674. (c) Yan, R.-L.; Luo, J.; Wang, C.-X.; Ma, C.-W.;
Huang, G.-S.; Liang, Y.-M. J. Org. Chem. 2010, 75, 5395. (d) Liu, W.; Jiang,
H.; Huang, L. Org. Lett. 2010, 12, 312. (e) Merkul, E.; Boersch, C.; Frank,
€
W.; Muller, T. J. J. Org. Lett. 2009, 11, 2269. (f ) Ackermann, L.; Sandmann,
R.; Kaspar, L. T. Org. Lett. 2009, 11, 2031. (g) Mizuno, A.; Kusama, H.;
Iwasawa, N. Angew. Chem., Int. Ed. 2009, 48, 8318. (h) Miura, T.; Yamauchi,
M.; Murakami, M. Chem. Commun. 2009, 1470. (i) Lu, Y.; Arndtsen, B. A.
Angew. Chem., Int. Ed. 2008, 47, 5430. (j) Dudnik, A. S.; Sromek, A. W.;
Rubina, M.; Kim, J. T.; Kel’in, A. V.; Gevorgyan, V. J. Am. Chem. Soc. 2008,
130, 1440. (k) Kwit, M.; Babu, N. J.; Nangia, A.; Jaisankar, P. Org. Lett.
2008, 10, 1373. (l) Mihovilovic, M. D.; Stanetty, P. Angew. Chem., Int. Ed.
2007, 46, 3612. (m) Galliford, C. V.; Scheidt, K. A. J. Org. Chem. 2007, 72,
1811. (n) Cyr, D. J.; Arndtsen, B. A. J. Am. Chem. Soc. 2007, 129, 12366.
(o) Cadierno, V.; Gimeno, J.; Nebra, N. Chem.;Eur. J. 2007, 13, 9973.
(p) Ishikawa, T.; Aikawa, T.; Watanabe, S.; Saito, S. Org. Lett. 2006, 8, 3881.
(q) Yamamoto, Y.; Hayashi, H.; Saigoku, T.; Nishiyama, H. J. Am. Chem.
Soc. 2005, 127, 10804. (r) Ohri, R. V.; Radosevich, A. T.; Hrovat, K. J.;
Musich, C.; Huang, D.; Holman, T. R.; Toste, F. D. Org. Lett. 2005, 7, 2501.
(s) Tejedor, D.; Gonzales-Cruz, D.; Garcia-Tellado, F.; Marrero-Tellado,
J. J.; Rodriguez, M. L. J. Am. Chem. Soc. 2004, 126, 8390. (t) Dey, S.; Pal, C.;
Nandi, D.; Giri, V. C.; Zaidlewicz, M.; Krzeminski, M.; Smentek, L.; Hess,
B. A.; Gawronski, J.; Ramanathan, B.; Keith, A. J.; Armstrong, D.; Odom,
A. L. Org. Lett. 2004, 6, 2957. (u) Dhawan, R.; Arndtsen, B. A. J. Am. Chem.
Soc. 2004, 126, 468. (v) Kel’in, A. V.; Sromek, A. W.; Gevorgyan, V. J. Am.
Chem. Soc. 2001, 123, 2074. (w) Wan, X.; Xing, D.; Fang, Z.; Li, B.; Zhao, F.;
Zhang, K.; Yang, L.; Shi, Z. J. Am. Chem. Soc. 2006, 128, 12046.
The plausible mechanism of these metal-catalyzed Schmidt
reactions is outlined in Scheme 2. In this mechanism, the
carbophilic transition metal Pt or Au first activates the triple
bond of A and triggers the intramolecular nucleophilic addi-
tion of the proximal nitrogen atom of the azide moiety to give
cyclic intermediate C. Then the loss of dinitrogen from C leads
to carbene intermediate D, which could produce the 2H-pyrrole
(E) and regenerate the active catalyst via a formal 1,2-H shift.
(10) For selected reviews, see: (a) Abu Sohel, S. M.; Liu, R.-S. Chem. Soc.
Rev. 2009, 38, 2269. (b) Majumdar, K. C.; Debnath, P.; Roy, B. Heterocycles
2009, 78, 2661. (c) Patil, N. T.; Yamamoto, Y. Chem. Rev. 2008, 108, 3395.
^
(d) Michelet, V.; Toullec, P. Y.; Genet, J.-P. Angew. Chem., Int. Ed. 2008, 47,
4268. (e) Kirsch, S. Synthesis 2008, 3183. (f ) Meldal, M.; Tornøe, C. W.
Chem. Rev. 2008, 108, 2952. (g) Lewis, J. C.; Bergman, R. G.; Ellman, J. A.
Acc. Chem. Res. 2008, 41, 1013. (h) Rubin, M.; Rubina, M.; Gevorgyan, V.
Chem. Rev. 2007, 107, 3117. (i) Donohoe, T. J.; Orr, A. J.; Bingham, M.
Angew. Chem., Int. Ed. 2006, 45, 2664. (j) Ma, S. Chem. Rev. 2005, 105, 2829.
(k) Ma, S.; Gu, Z. Angew. Chem., Int. Ed. 2005, 44, 7512. (l) Bruneau, C.
Angew. Chem., Int. Ed. 2005, 44, 2328. (m) Alonso, F.; Beletskaya, I. P.; Yus,
M. Chem. Rev. 2004, 104, 3079. (n) Nakamura, I.; Yamamoto, Y. Chem. Rev.
2004, 104, 2127. (o) Lloyd-Jones, G. C. Org. Biomol. Chem. 2003, 1, 215.
(p) Aubert, C.; Buisine, O.; Malacria, M. Chem. Rev. 2002, 102, 813. (q) Trost,
B. M.; Toste, F. D.; Pinkerton, A. B. Chem. Rev. 2001, 101, 2067.
(13) (a) Saito, A.; Konishi, T.; Hanzawa, Y. Org. Lett. 2010, 12, 372.
€
(b) Kramer, S.; Madsen, J. L. H.; Rottlander, M.; Skrydstrup, T. Org. Lett.
2010, 12, 2758. (c) Du, X.; Xie, X.; Liu, Y. J. Org. Chem. 2010, 75, 510.
(d) Blanc, A.; Alix, A.; Weibel, J.-M.; Pale, P. Eur. J. Org. Chem. 2010, 1644.
(e) Aponick, A.; Li, C.-Y.; Malinge, J.; Marques, E. F. Org. Lett. 2009, 11,
4624. (f) Zhao, X.; Zhang, E.; Tu, Y.-Q.; Zhang, Y.-Q.; Yuan, D.-Y.; Cao,
K.; Fan, C.-A.; Zhang, F.-M. Org. Lett. 2009, 11, 4002. (g) Egi, M.; Azechi,
K.; Akai, S. Org. Lett. 2009, 11, 5002. (h) Davies, P. W.; Martin, N. Org. Lett.
2009, 11, 2293. (i) Chen, D.-D.; Hou, X.-L.; Dai, L.-X. Tetrahedron Lett.
2009, 50, 6944. (j) Lu, Y.; Fu, X.; Chen, H.; Du, X.; Jia, X; Liu, Y. Adv. Synth.
Catal. 2009, 351, 129. (k) Levallo, V.; Frey,G.D.;Donnadieu,B.; Soleilhavoup,
M.; Bertrand, G. Angew. Chem., Int. Ed. 2008,47,5224. (l)Shu, X.-Z.;Liu, X.-Y.;
Xiao, H.-Q.; Ji, K.-G.; Guo, L.-N.; Liang, Y.-M. Adv. Synth. Catal. 2008,
350, 243. (m) Istrate, F.; Gagosz, F. Org. Lett. 2007, 9, 3181. (n) Binder, J. T.;
Kirsch, S. F. Org. Lett. 2006, 8, 2151. (o) Harrison, T. J.; Kozak, J. A.;
(11) For reviews, see: (a) Hashmi, A. S. K. Angew. Chem., Int. Ed. 2010,
€
49, 5232. (b) Furstner, A. Chem. Soc. Rev. 2009, 38, 3208. (c) Gorin, D. J.;
Sherry, B. D.; Toste, F. D. Chem. Rev. 2008, 108, 3351. (d) Widenhoefer,
R. A. Chem.;Eur. J. 2008, 14, 5382. (e) Li, Z.; Brouwer, C.; He, C. Chem.
Rev. 2008, 108, 3239. (f ) Arcadi, A. Chem. Rev. 2008, 108, 3266. (g) Crone,
B.; Kirsch, S. F. Chem.;Eur. J. 2008, 14, 3514. (h) Shen, H. C. Tetrahedron
ꢀ
2008, 64, 3885. (i) Shen, H. C. Tetrahedron 2008, 64, 7847. (j) Jimenez-Nunez,
E.; Echavarren, A. M. Chem. Commun. 2007, 333. (k) Gorin, D. J.; Toste,
ꢀ~
€
F. D. Nature 2007, 446, 395. (l) Furstner, A.; Davies, P. W. Angew. Chem.,
ꢀ
Corbella-Pane, M.; Dake, G. R. J. Org. Chem. 2006, 71, 4525. (p) Seregin,
I. V.; Gevorgyan, V. J. Am. Chem. Soc. 2006, 128, 12050.
(14) (a) Yoshida, M.; Al-Amin, M.; Shishido, K. Synthesis 2009, 2454.
(b) Nishibayashi, Y.; Yoshikawa, M.; Inada, Y.; Milton, M. D.; Hidai, M.;
Uemura, S. Angew. Chem., Int. Ed. 2003, 42, 2681.
(15) (a) Gorin, D. J.; Davis, N. R.; Toste, F. D. J. Am. Chem. Soc. 2005,
127, 11260. (b) Hiroya, K.; Matsumoto, S.; Ashikawa, M.; Ogiwara, K.;
Sakamoto, T. Org. Lett. 2006, 8, 5349. For a selected example where both
gold and platinum are active, see: (c) Hashmi, A. S. K.; Frost, T. M.; Bats,
J. W. Org. Lett. 2001, 3, 3769.
Int. Ed. 2007, 46, 3410. (m) Hashmi, A. S. K. Chem. Rev. 2007, 107, 3180.
(n) Zhang, L.; Sun, J.; Kozmin, S. A. Adv. Synth. Catal. 2006, 348, 2271.
(o) Hashmi, A. S. K.; Hutchings, G. J. Angew. Chem., Int. Ed. 2006, 45, 7896.
(p) Ma, S.; Yu, S.; Gu, Z. Angew. Chem., Int. Ed. 2006, 45, 200.
(12) For reviews, see: (a) Balcells, D.; Clot, E.; Eisenstein, O. Chem. Rev.
2010, 110, 749. (b) Soriano, E.; Marco-Contelles, J. Acc. Chem. Res. 2009, 42,
ꢀ
ꢀ~
1026. (c) Jimenez-Nunez, E.; Echavarren, A. M. Chem. Rev. 2008, 108, 3326.
(d) Marco-Contelles, J.; Soriano, E. Chem.;Eur. J. 2007, 13, 1350.
(e) Dedieu, A. Chem. Rev. 2000, 100, 543. (f) Niu, S.; Hall, M. B. Chem.
Rev. 2000, 100, 353.
J. Org. Chem. Vol. 75, No. 22, 2010 7843