Inorganic Chemistry
Article
Performance of N-Doped Carbon Quantum Dot/TiO2 Composites
for Photocatalytic Hydrogen Evolution. ChemSusChem 2017, 10,
4650−4656.
ACKNOWLEDGMENTS
■
This work was financially supported by the National Natural
Science Foundation of China (U1510125, 51272301,
51502270, and 21703209) and the fund of the State Key
Laboratory of Solidification Processing in NWPU
(SKLSP201719). The authors also appreciate the financial
support by the Shanxi Province Science Foundation
(201601D021059), Key Research and Development (R&D)
Projects of Shanxi Province (201803D121037 and
201803D421091), the Shanxi Province Science Foundation
for Youths (201701D221087, 201701D221085, and
201801D221085), the Specialized Research Fund for Sanjin
Scholars Program of Shanxi Province, the Program for the
Outstanding Innovative Teams of Higher Learning Institutions
of Shanxi, the Fund of CAS Key Laboratory of Carbon
Materials (KLCMKFJJ1709), the North University of China
Fund for Distinguished Young Scholars, and “333” talent
project research. This work was part of the Ph.D. degree of Jin
(2017) and North University of China Fund for Scientific
Innovation Team.
(14) Hu, S. Tuning Optical Properties and Photocatalytic Activities
of Carbon-Based“Quantum Dots” through Their Surface Groups.
Chem. Rec. 2016, 16, 219−230.
(15) Shang, L.; Tong, B.; Yu, H.; Waterhouse, G. I. N.; Zhou, C.;
Zhao, Y.; Tahir, M.; Wu, L. Z.; Tung, C.-H.; Zhang, T. CdS
Nanoparticle-Decorated Cd Nanosheets for Efficient Visible Light-
Driven Photocatalytic Hydrogen Evolution. Adv. Energy Mater. 2016,
6, 1501241.
(16) Wu, W.; Zhang, Q.; Wang, R.; Zhao, Y.; Li, Z.; Ning, H.; Zhao,
Q.; Wiederrecht, G. P.; Qiu, J.; Wu, M. Synergies between
Unsaturated Zn/Cu Doping Sites in Carbon Dots Provide New
Pathways for Photocatalytic Oxidation. ACS Catal. 2018, 8, 747−753.
(17) Hu, S.; Chang, Q.; Lin, K.; Yang, J. Tailoring Surface Charge
Distribution of Carbon Dots through Heteroatoms for Enhanced
Visible-Light Photocatalytic Activity. Carbon 2016, 105, 484−489.
(18) Zhang, Q.; Xu, W.; Han, C.; Wang, X.; Wang, Y.; Li, Z.; Wu,
W.; Wu, M. Graphene Structure Boosts Electron Transfer of Dual-
Metal Doped Carbon Dots in Photooxidation. Carbon 2018, 126,
128−134.
(19) Chai, N. N.; Wang, H. X.; Hu, C. X.; Wang, Q.; Zhang, H. L.
Well-Controlled Layer-by-Layer Assembly of Carbon Dot/CdS
Heterojunctions for Efficient Visible-Light-Driven Photocatalysis. J.
Mater. Chem. A 2015, 3, 16613−16620.
(20) An, X.; Wang, Y.; Lin, J.; Shen, J.; Zhang, Z.; Wang, X.
Heterojunction: Important Strategy for Constructing Composite
Photocatalysts. Sci. Bull. 2017, 62, 599−601.
(21) Zhang, H.; Huang, H.; Ming, H.; Li, H.; Zhang, L.; Liu, Y.;
Kang, Z. Carbon Quantum Dots/Ag3PO4 Complex Photocatalysts
with Enhanced Photocatalytic Activity and Stability under Visible
Light. J. Mater. Chem. 2012, 22, 10501−10506.
(22) Huang, Y.; Liang, Y.; Rao, Y.; Zhu, D.; Cao, J. J.; Shen, Z.; Ho,
W.; Lee, S. C. Environment-Friendly Carbon Quantum Dots/
ZnFe2O4 Photocatalysts: Characterization, Biocompatibility, and
Mechanisms for NO Removal. Environ. Sci. Technol. 2017, 51,
2924−2933.
(23) Zhang, H.; Ming, H.; Lian, S.; Huang, H.; Li, H.; Zhang, L.;
Liu, Y.; Kang, Z.; Lee, S. T. Fe2O3/Carbon Quantum Dots Complex
Photocatalysts and Their Enhanced Photocatalytic Activity under
Visible Light. Dalton Trans 2011, 40, 10822−10825.
REFERENCES
■
(1) Yu, H.; Shi, R.; Zhao, Y.; Waterhouse, G. I. N.; Wu, L. Z.; Tung,
C. H.; Zhang, T. Smart Utilization of Carbon Dots in Semiconductor
Photocatalysis. Adv. Mater. 2016, 28, 9454−9477.
(2) Sun, Y. P.; Zhou, B.; Lin, Y.; Wang, W.; Fernando, K. A. S.;
Pathak, P.; Meziani, M. J.; Harruff, B. A.; Wang, X.; Wang, H.; Luo, P.
G.; Yang, H.; Kose, M. E.; Chen, B.; Veca, L. M.; Xie, S. Y. Quantum-
Sized Carbon Dots for Bright and Colorful Photoluminescence. J. Am.
Chem. Soc. 2006, 128, 7756−7757.
(3) Li, H.; He, X.; Kang, Z.; Huang, H.; Liu, Y.; Liu, J.; Lian, S.;
Tsang, C. H.; Yang, X.; Lee, S. T. Water-Soluble Fluorescent Carbon
Quantum Dots and Photocatalyst Design. Angew. Chem., Int. Ed.
2010, 49, 4430−4434.
(4) Liu, J.; Liu, Y.; Liu, N.; Han, Y.; Zhang, X.; Huang, H.; Lifshitz,
Y.; Lee, S. T.; Zhong, J.; Kang, Z. Metal-Free Efficient Photocatalyst
for Stable Visible Water Splitting via a Two-Electron Pathway. Science
2015, 347, 970−974.
(5) Lim, S. Y.; Shen, W.; Gao, Z. Carbon Quantum Dots and Their
Applications. Chem. Soc. Rev. 2015, 44, 362−381.
(6) Song, Z.; Chang, Q.; Trinchi, A.; Li, N.; Wang, H.; Yang, J.; Hu,
S. A Simple, Scalable Approach for Combining Carbon Dots with
Hexagonal Nanoplates of Nickel-based Compounds for Efficient
Photocatalytic Reduction. Dalton Trans 2018, 47, 12694−12701.
(7) Han, X.; Chang, Q.; Li, N.; Wang, H.; Yang, J.; Hu, S. In-situ
Incorporation of Carbon Dots into Mesoporous Nickel Boride for
Regulating Photocatalytic Activities. Carbon 2018, 137, 484−492.
(8) Hu, S.; Yang, W.; Li, N.; Wang, H.; Yang, J.; Chang, Q. Carbon-
Dot-Based Heterojunction for Engineering Band-Edge Position and
Photocatalytic Performance. Small 2018, 14, 1803447.
(9) Bao, L.; Liu, C.; Zhang, Z. L.; Pang, D. W. Photoluminescence-
Tunable Carbon Nanodots: Surface-State Energy-Gap Tuning. Adv.
Mater. 2015, 27, 1663−1667.
(10) Wang, X.; Cao, L.; Lu, F.; Meziani, M. J.; Li, H.; Qi, G.; Zhou,
B.; Harruff, B. A.; Kermarrec, F.; Sun, Y. P. Photoinduced Electron
Transfers with Carbon Dots. Chem. Commun. 2009, 46, 3774−3776.
(11) Huang, J.; Lu, W.; Wang, J.; Li, Q.; Tian, B.; Li, C.; Wang, Z.;
Jin, L.; Hao, J. Strategy to Enhance the Luminescence of Lanthanide
Ions Doped MgWO4 Nanosheets through Incorporation of Carbon
Dots. Inorg. Chem. 2018, 57, 8662−8672.
(12) Li, Y.; Feng, X.; Lu, Z.; Yin, H.; Liu, F.; Xiang, Q. Enhanced
Photocatalytic H2-Production Activity of C-Dots Modified g-C3N4/
TiO2 Nanosheets Composites. J. Colloid Interface Sci. 2018, 513, 866−
876.
(13) Shi, R.; Li, Z.; Yu, H.; Shang, L.; Zhou, C.; Waterhouse, G. I.
N.; Wu, L. Z.; Zhang, T. Effect of Nitrogen Doping Level on the
(24) Xia, J.; Di, J.; Li, H.; Xu, H.; Li, H.; Guo, S. Ionic Liquid-
Induced Strategy for Carbon Quantum Dots/BiOX (X = Br, Cl)
Hybrid Nanosheets with Superior Visible Light-Driven Photocatalysis.
Appl. Catal., B 2016, 181, 260−269.
(25) Di, J.; Xiong, J.; Li, H.; Liu, Z. Ultrathin 2D Photocatalysts:
Electronic-Structure Tailoring, Hybridization, and Applications. Adv.
Mater. 2018, 30, 1704548.
(26) Cheng, Y.; Pang, K.; Wu, X.; Zhang, Z.; Xu, X.; Ren, J.; Huang,
W.; Song, R. In Situ Hydrothermal Synthesis MoS2/Guar Gum
Carbon Nanoflowers as Advanced Electrocatalysts for Electrocatalytic
Hydrogen Evolution. ACS Sustainable Chem. Eng. 2018, 6, 8688−
8696.
(27) Yu, H.; Xiao, P.; Wang, P.; Yu, J. Amorphous Molybdenum
Sulfide as Highly Efficient Electron-Cocatalyst for Enhanced Photo-
catalytic H2 Evolution. Appl. Catal., B 2016, 193, 217−225.
(28) Swain, G.; Sultana, S.; Moma, J.; Parida, K. Fabrication of
Hierarchical Two-Dimensional MoS2 Nanoflowers Decorated upon
Cubic CaIn2S4 Microflowers: Facile Approach To Construct Novel
Metal-Free p-n Heterojunction Semiconductors with Superior Charge
Separation Efficiency. Inorg. Chem. 2018, 57, 10059−10071.
(29) Atkin, P.; Daeneke, T.; Wang, Y.; Carey, B. J.; Berean, K. J.;
Clark, R. M.; Ou, J. Z.; Trinchi, A.; Cole, I. S.; Kalantar-zadeh, K. 2D
WS2/Carbon Dot Hybrids with Enhanced Photocatalytic Activity. J.
Mater. Chem. A 2016, 4, 13563−13571.
(30) Li, Z.; Ye, R.; Feng, R.; Kang, Y.; Zhu, X.; Tour, J. M.; Fang, Z.
Graphene Quantum Dots Doping of MoS2 Monolayers. Adv. Mater.
2015, 27, 5235−5240.
F
Inorg. Chem. XXXX, XXX, XXX−XXX