3636
D. Vuina et al. / Tetrahedron Letters 48 (2007) 3633–3637
15. (a) Davies, M. B.; Austin, J.; Partridge, D. A. Vitamin C,
References and notes
Its Chemistry and Biochemistry; The Royal Society of
Chemistry: Cambridge, 1991; p 127; (b) Bors, W.; Buett-
ner, G. R. In Vitamin C in Health and Disease; Packer, L.,
Fuchs, J., Eds.; Marcel Dekker: New York, 1997; Chapter
4, p 76; (c) Kipp, B. H.; Faraj, C.; Li, G.; Njus, D.
Bioelectrochemistry 2004, 64, 7.
1. Reece, S. Y.; Hodgkiss, J. M.; Stubbe, J.; Nocera, D. G.
Philos. Trans. R. Soc. B 2006, 361, 1351.
2. Mayer, J. M. Annu. Rev. Phys. Chem. 2004, 55, 363.
3. (a) Chang, C. J.; Chang, M. C. Y.; Damrauer, N. H.;
Nocera, D. G. Biochim. Biophys. Acta Bioenerg. 2004,
1655, 13; (b) Hammes-Schiffer, S.; Iordanova, N. Biochim.
Biophys. Acta Bioenerg. 2004, 1655, 29; (c) Cukier, R. I.
Biochim. Biophys. Acta Bioenerg. 2004, 1655, 37; (d)
Mayer, J. M.; Rhile, I. J. Biochim. Biophys. Acta Bioenerg.
2004, 1655, 51.
4. (a) Tommos, C.; Babcock, G. T. Acc. Chem. Res. 1998, 31,
18; (b) Dasgupta, J.; van Willigen, R. T.; Dismukes, C.
Phys. Chem. Chem. Phys. 2004, 6, 4793; (c) Mayer, J. M.;
Rhile, I. J.; Larsen, F. B.; Mader, E. A.; Markle, T. F.;
DiPasquale, A. G. Photosynth. Res. 2006, 87, 3.
16. Yunes, R. A.; Terenzani, A. J.; do Amaral, L. J. Am.
Chem. Soc. 1975, 97, 368.
17. Eberson, L. Electron Transfer Reactions in Organic
Chemistry; Springer: New York, 1987; pp 77–79.
18. (a) Romesberg, F. E.; Schowen, R. L. Adv. Phys. Org.
Chem. 2004, 39, 27; (b) Kohen, A.; Klinman, J. Acc.
Chem. Res. 2006, 31, 397, and references cited therein.
19. (a) Huang, H.; Sommerfeld, D.; Dunn, B. C.; Eyring, E.
M.; Lloyd, C. R. J. Phys. Chem. A 2001, 105, 3536; (b) Al-
Ajlouni, A.; Bakac, A.; Espenson, J. H. Inorg. Chem. 1993,
32, 5792.
´
5. (a) Hodgkiss, J. M.; Damrauer, N. H.; Presse, S.;
20. (a) Mayer, J. M.; Hrovat, D. A.; Thomas, J. L.; Borden,
W. T. J. Am. Chem. Soc. 2002, 124, 11142; (b) DiLabio, G.
A.; Ingold, K. U. J. Am. Chem. Soc. 2005, 127, 6693, and
references cited therein.
21. (a) Weber, M.; Fischer, H. J. Am. Chem. Soc. 1999, 121,
7381; (b) Jackson, R. A.; O’Neill, D. W. J. Chem. Soc.,
Chem. Commun. 1969, 1210; (c) Roth, J. P.; Lowell, S.;
Mayer, J. M. J. Am. Chem. Soc. 2000, 122, 5486, and
references cited therein.
Rosenthal, J.; Nocera, D. G. J. Phys. Chem. B 2006,
110, 18853; (b) Rosenthal, J.; Hodgkiss, J. M.; Young, E.
R.; Nocera, D. G. J. Am. Chem. Soc. 2006, 128, 10474.
6. (a) Rhile, I. J.; Markle, T. F.; Nagao, H.; DiPasquale, A.
G.; Lam, O. P.; Lockwood, M. A.; Rotter, K.; Mayer, J.
M. J. Am. Chem. Soc. 2006, 128, 6075; (b) Sjo¨din, M.;
˚
´
Irebo, T.; Utas, J. E.; Lind, J.; Merenyi, G.; Akermark, B.;
Hammarstro¨m, L. J. Am. Chem. Soc. 2006, 128,
13076.
22. All the rate constants (the rate parameters were calculated
from the experimental pseudo-first-order rate constants
obtained spectrophotometrically14g by following the dis-
appearance of the absorbance of the nitroso compound at
306 nm.) presented are related solely to the process
(Scheme 1). The reverse reaction (the recombination of
7. (a) Li, B.; Zhao, J.; Onda, K.; Jordan, K. D.; Yang, J.;
Petek, H. Science 2006, 311, 1436; (b) Belevich, I.;
Verkhovsky, M. I.; Wikstro¨m, M. Nature 2006, 440, 829.
8. (a) Cukier, R. I. J. Phys. Chem. 1994, 98, 2377; (b) Zhao,
X. G.; Cukier, R. I. J. Phys. Chem. 1995, 99, 945; (c)
Cukier, R. I. J. Phys. Chem. 1995, 99, 16101; (d) Cukier,
R. I. J. Phys. Chem. 1996, 100, 15428; (e) Cukier, R. I.;
Nocera, D. G. Annu. Rev. Phys. Chem. 1998, 49, 337.
9. Cukier, R. I. J. Phys. Chem. B 2002, 106, 1746.
10. (a) Soudackov, A. V.; Hammes-Schiffer, S. J. Chem. Phys.
1999, 111, 4672; (b) Soudackov, A. V.; Hammes-Schiffer,
S. J. Chem. Phys. 2000, 113, 2385; (c) Decornez, H.;
Hammes-Schiffer, S. J. Phys. Chem. A 2000, 104, 9370; (d)
Hammes-Schiffer, S. Acc. Chem. Res. 2001, 34, 273, and
references cited therein.
11. (a) Iordanova, N.; Decornez, H.; Hammes-Schiffer, S. J.
Am. Chem. Soc. 2001, 123, 3723; (b) Carra, C.; Iordanova,
N.; Hammes-Schiffer, S. J. Am. Chem. Soc. 2003, 125,
10429; (c) Skone, J. H.; Soudackov, A. V.; Hammes-
Schiffer, S. J. Am. Chem. Soc. 2006, 128, 16655; (d)
Hatcher, E.; Soudackov, A. V.; Hammes-Schiffer, S. J.
Am. Chem. Soc. 2007, 129, 187.
AscÅꢀ and PhNHOÅ, k
)
ꢀ1
k1
HAscꢀ þ PhNO ¢ AscÅꢀ þ PhNHOÅ
ð1Þ
k
ꢀ1
should be insignificant under the conditions applied. This
is probably due to a 103-fold increase in the rate of dispro-
portionation of an ascorbyl radical to ascorbate and
dehydroascorbic acid on going from the neutral to the
acidic range (see for example Ref. 15b, pp 78–79, and
references cited therein), since the disproportionation com-
petes with the reverse reaction. The net chemical reaction
is14g
HAscꢀ þ PhNO þ Hþ ! DHA þ PhNHOH
ð2Þ
(DHA = dehydroascorbic acid, PhNHOH = phenylhydr-
oxylamine), as confirmed spectroscopically and by product
analysis, according to previous findings.14g The reaction
goes to completion, under all the conditions employed.
The findings relevant to the above are (i) the kinetics are
second order overall and first order with respect to both
ascorbate and the nitroso compound. This is true in acid-
ic14g as well in the neutral range; (ii) in the acidic range,
the kinetics follow the rate law14g
12. Hammes-Schiffer, S. Acc. Chem. Res. 2006, 39, 93, and
references cited therein.
´
13. (a) Presse, S.; Silbey, R. J. Chem. Phys. 2006, 124, 164504;
(b) Singh, N.; O’Malley, P. J.; Popelier, P. A. Phys. Chem.
Chem. Phys. 2005, 7, 614.
14. (a) Macdonald, I. K.; Badyal, S. K.; Ghamsari, L.;
Moody, P. C. E.; Raven, E. L. Biochemistry 2006, 45,
7808; (b) Njus, D.; Wigle, M.; Kelley, P. M.; Kipp, B. H.;
Schlegel, H. B. Biochemistry 2001, 40, 11905; (c) Njus, D.;
Kelley, P. M. Biochim. Biophys. Acta 1993, 1144, 235; (d)
Bartlett, D.; Church, D.; Bounds, P.; Koppenol, W. H.
Free Radical. Biol. Med. 1995, 18, 85; (e) Bisby, R. H.;
Parker, A. W. Arch. Biochem. Biophys. 1995, 317, 170; (f)
Kytzia, A.; Korth, H. G.; Sustmann, R.; de Groot, H.;
ꢂ
ꢀ
ꢁ
ꢃ
Ka
Ka þ ½Hþꢂ
ꢀ
kobs
¼
ðkHA ꢀ kH A
Þ
þ KH A ½H2Aꢂo
2
2
ꢀ
where kHA and kH A are the second-order rate constants
2
for the reactions of the nitroso compound with ascorbate
and ascorbic acid, respectively, Ka is the first dissociation
3
constant of ascorbic acid, and since kHA is14g 10 greater
´
Kirsch, M. Chem. Eur. J. 2006, 12, 8786; (g) Ursˇic, S.;
ꢀ
´
Vrcˇek, V.; Ljubas, D.; Vinkovic, I. New J. Chem. 1998,
than kH A, the latter can, to a good approximation, be
2
neglected at H+ concentrations greater than 10ꢀ3 mol dmꢀ3
(P98% ascorbate reaction); (iii) the second-order rate
constants (k1, 2) calculated from the observed pseudo-
first-order rate constants using the above rate law are
221; (h) Mottley, C.; Kalyanaraman, B.; Mason, R. P.
´
´
FEBS Lett. 1981, 130, 12; (i) Brezova, V.; Tarabek, P.;
´
ˇ
ˇ
Dvoranova, D.; Stasko, A.; Biskupic, S. J. Photochem.
Photobiol. A 2003, 155, 179.