ACS Catalysis
Page 4 of 6
(2)
Aresta, M.; Dibenedetto, A.; Angelini, A. Catalysis for the
Confined in Graphene Toward High-Efficiency Carbon
Dioxide Electroreduction. Nat. Commun. 2016, 7, 12697.
Jiangꢀ, K.; Sandberg, R. B.; Akey, A. J.; Liu, X.; Bell, D. C.;
Nørskov, J. K.; Chan, K.; Wang, H. Metal Ion Cycling of Cu
Foil for Selective C–C Coupling in Electrochemical CO2
Reduction. Nat. Catal. 2018, 1, 111–119.
Zhang, W.; Qin, Q.; Dai, L.; Qin, R.; Zhao, X.; Chen, X.; Ou,
D.; Chen, J.; Chuong, T.; Wu, B.; Zheng, N. Electrochemical
Reduction of Carbon Dioxide to Methanol on Hierarchical
Pd/SnO2 Nanosheets with Abundant Pd–O–Sn Interfaces.
Angew. Chem. Int. Ed. 2018, 57, 9475–9479.
Zhuang, T.-T.; Liang, Z.-Q.; Seifitokaldani, A.; Li, Y.; Lunaꢀ,
P. D.; Burdyny, T.; Che, F.; Meng, F.; Min, Y.;
Quintero-Bermudez, R.; Dinh, C. T.; Pang, Y.; Zhong, M.;
Zhang, B.; Li, J.; Chen, P.-N.; Zhengꢀ, X.-L.; Liang, H.; Ge,
W.-N.; Ye, B.-J.; Sinton, D.; Yu, S.-H.; Sargent, E. H.
Steering Post-C–C Coupling Selectivity Enables High
Efficiency Electroreduction of Carbon Dioxide to
Multi-Carbon Alcohols. Nat. Catal. 2018, 1, 421–428.
Kim, D.; Kleyd, C. S.; Li, Y.; Yang, P. Copper Nanoparticle
Ensembles for Selective Electroreduction of CO2 to C2–C3
Products. Proc. Natl. Acad. Sci. U. S. A. 2017, 114,
10560–10565.
Morales-Guioꢀ, C. G.; Cave, E. R.; Nitopi, S. A.; Feaster, J. T.;
Wang, L.; Kuhl, K. P.; Jackson, A.; Johnson, N. C.; Abram,
D. N.; Hatsukade, T.; Hahn, C.; Jaramillo, T. F. Improved
CO2 Reduction Activity towards C2+ Alcohols on a Tandem
Gold on Copper Electrocatalyst. Nat. Catal. 2018, 1, 764–771.
Zheng, Y.; Vasileff, A.; Zhou, X.; Jiao, Y.; Jaroniec, M.;
Qiao, S.-Z. Understanding the Roadmap for Electrochemical
Reduction of CO2 to Multi-Carbon Oxygenates and
Hydrocarbons on Copper-Based Catalysts. J. Am. Chem. Soc.
2019, 141, 7646–7659.
Jiao, Y.; Zheng, Y.; Chen, P.; Jaroniec, M.; Qiao, S.-Z.
Molecular Scaffolding Strategy with Synergistic Active
Centers to Facilitate Electrocatalytic CO2 Reduction to
Hydrocarbon/Alcohol. J. Am. Chem. Soc. 2017, 139,
18093–18100.
Kakati, N.; Maiti, J.; Lee, S. H.; Jee, S. H.; Viswanathan, B.;
Yoon, Y. S. Anode Catalysts for Direct Methanol Fuel Cells
in Acidic Media: Do We Have Any Alternative for Pt or
Pt−Ru? Chem. Rev. 2014, 114, 12397–12429.
Sial, M. A. Z. G.; Dina, M. A. U.; Wang, X. Multimetallic
Nanosheets: Synthesis and Applications in Fuel Cells. Chem.
Soc. Rev. 2018, 47, 6175–6200.
Rousseau, S.; Coutanceau, C.; Lamy, C.; Léger, J.-M. Direct
Ethanol Fuel Cell (DEFC): Electrical Performances and
Reaction Products Distribution under Operating Conditions
with Different Platinum-Based Anodes. J. Power Sources
2006, 158, 18–24.
Valorization of Exhaust Carbon: From CO2 to Chemicals,
Materials, and Fuels. Technological Use of CO2. Chem. Rev.
2014, 114, 1709−1742.
1
2
3
4
5
6
7
8
(20)
(21)
(3)
(4)
Mahmood, A.; Guo, W.; Tabassum, H.; Zou, R.
Metal-Organic
Framework-Based
Nanomaterials
for
Electrocatalysis. Adv. Energy Mater. 2016, 6, 1600423.
Graciani, J.; Mudiyanselage, K.; Xu, F.; Baber, A. E.; Evans,
J.; Senanayake, S. D.; Stacchiola, D. J.; Liu, P.; Hrbek, J.;
Sanz, J. F.; Rodriguez, J. A. Highly Active Copper-Ceria and
Copper-Ceria-Titania Catalysts for Methanol Synthesis from
CO2. Science 2014, 345, 546−550.
Vasileff, A.; Xu, C.; Jiao, Y.; Zheng, Y.; Qiao, S.-Z. Surface
and Interface Engineering in Copper-Based Bimetallic
Materials for Selective CO2 Electroreduction. Chem 2018, 4,
1809–1831.
9
(22)
(5)
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
(6)
(7)
(8)
Duan, X.; Xu, J.; Wei, Z.; Ma, J.; Guo, S.; Wang, S.; Liu, H.;
Dou, S. Metal-Free Carbon Materials for CO2 Electrochemical
Reduction. Adv. Mater. 2017, 29, 1701784.
Lu, Q.; Rosen, J.; Zhou, Y.; Hutchings, G. S.; Kimmel, Y. C.;
Chen, J. G.; Jiao, F. A Selective and Efficient Electrocatalyst
for Carbon Dioxide Reduction. Nat. Commun. 2014, 5, 3242.
Lu, C.; Yang, J.; Wei, S.; Bi, S.; Xia, Y.; Chen, M.; Hou, Y.;
Qiu, M.; Yuan, C.; Su, Y.; Zhang, F.; Liang, H.; Zhuang, X.
Atomic Ni Anchored Covalent Triazine Framework as High
Effcient Electrocatalyst for Carbon Dioxide Conversion. Adv.
Funct. Mater. 2019, 29, 1806884.
Cao, L.; Raciti, D.; Li, C.; Livi, K. J. T.; Rottmann, P. F.;
Hemker, K. J.; Mueller, T.; Wang, C. Mechanistic Insights for
Low-Overpotential Electroreduction of CO2 to CO on Copper
Nanowires. ACS Catal. 2017, 7, 8578−8587.
Gu, J.; Hsu, C.-S.; Bai, L.; Chen, H.; Hu, X. Atomically
Dispersed Fe3+ Sites Catalyze Efficient CO2 Electroreduction
to CO. Science 2019, 364, 1091−1094.
Asadi, M.; Kim, K.; Liu, C.; Addepalli, A. V.; Abbasi, P.;
Yasaei, P.; Phillips, P.; Behranginia, A.; Cerrato, J. M.;
Haasch, R.; Zapol, P.; Kumar, B.; Klie, R. F.; Abiade, J.;
Curtiss, L. A.; Salehi-Khojin, A. Nanostructured Transition
Metal Dichalcogenide Electrocatalysts for CO2 Reduction in
Ionic Liquid. Science 2016, 353, 460−470.
(23)
(24)
(9)
(25)
(26)
(27)
(10)
(11)
(12)
(13)
Zhao, Z.; Peng, X.; Liu, X.; Sun, X.; Shi, J.; Han, L.; Lia, G.;
Luo, J. Efficient and Stable Electroreduction of CO2 to CH4 on
CuS Nanosheet Arrays. J. Mater. Chem.
A
2017, 5,
(28)
(29)
20239–20243.
Kuhl, K. P.; Hatsukade, T.; Cave, E. R.; Abram, D. N.;
Kibsgaard, J.; Jaramillo, T. F. Electrocatalytic Conversion of
Carbon Dioxide to Methane and Methanol on Transition
Metal Surfaces. J. Am. Chem. Soc. 2014, 136, 14107–14113.
Liu, X.; Yang, H.; He, J.; Liu, H.; Song, L.; Li, L.; Luo, J.
Highly Active, Durable Ultrathin MoTe2 Layers for the
Electroreduction of CO2 to CH4. Small 2018, 14, 1704049.
Luna, P. D.; Quintero-Bermudez, R.; Dinh, C.-T.; Rossꢀ, M.
B.; Bushuyev, O. S.; Todorović, P.; Regier, T.; Kelley, S. O.;
Yang, P.; Sargent, E. H. Catalyst Electro-Redeposition
Controls Morphology and Oxidation State for Selective
Carbon Dioxide Reduction. Nat. Catal. 2018, 1, 103–110.
Mistry, H.; Varela, A. S.; Bonifacio, C. S.; Zegkinoglou, I.;
Sinev, I.; Choi, Y.-W.; Kisslinge, K.; Stach, E. A.; Yang, J.
C.; Strasser, P.; Cuenya, B. R. Highly Selective
Plasma-Activated Copper Catalysts for Carbon Dioxide
Reduction To Ethylene. Nat. Commun. 2016, 7, 12123.
Wu, J.; Ma, S.; Sun, J.; Gold, J. I.; Tiwary, C.; Kim, B.; Zhu,
L.; Chopra, N.; Odeh, I. N.; Vajtai, R.; Yu, A. Z.; Luo, R.;
Lou, J.; Ding, G.; Kenis, P. J. A.; Ajayan, P. M. A Metal-Free
Electrocatalyst for Carbon Dioxide Reduction to
Multi-Carbon Hydrocarbons and Oxygenates. Nat. Commun.
2016, 7, 13869.
(14)
(15)
(30)
(31)
Yang, H.; Qin, S.; Wang, H.; Lu, J. Organically Doped
Palladium: A Highly Efficient Catalyst for Electroreduction of
CO2 to Methanol. Green Chem. 2015, 17, 5144–5148.
Yang, H.; Yue, Y.; Qin, S.; Wang, H.; Lu, J. Selective
Electrochemical Reduction of CO2 to Different Alcohol
Products by an Organically Doped Alloy Catalyst. Green
Chem. 2016, 18, 3216–3220.
(16)
(17)
(32)
Yang, H.; Qin, S.; Yue, Y.; Liu, L.; Wang, H.; Lu, J.
Entrapment of
a
Pyridine Derivative within
a
Copper–Palladium Alloy:
A
Bifunctional Catalyst for
Electrochemical Reduction of CO2 to Alcohols with Excellent
Selectivity and Reusability. Catal. Sci. Technol. 2016, 6,
6490–6494.
Ma, M.; Djanashvili, K.; Smith, W. A. Controllable
Hydrocarbon Formation from the Electrochemical Reduction
of CO2 over Cu Nanowire Arrays. Angew. Chem. Int. Ed.
2016, 55, 6680–6684.
Ren, D.; Ang, B. S.-H.; Yeo, B. S. Tuning the Selectivity of
Carbon Dioxide Electroreduction toward Ethanol on
Oxide-Derived CuxZn Catalysts. ACS Catal. 2016, 6,
8239–8247.
Cheng, Z.; Shifa, T. A.; Wang, F.; Gao, Y.; He, P.; Zhang, K.;
Jiang, C.; Liu, Q.; He, J. High-Yield Production of Monolayer
(33)
(34)
(35)
(18)
(19)
Gao, S.; Lin, Y.; Jiao, X.; Sun, Y.; Luo, Q.; Zhang, W.; Li, D.;
Yang, J.; Xie, Y. Partially Oxidized Atomic Cobalt Layers for
Carbon Dioxide Electroreduction to Liquid Fuel. Nature 2016,
529, 68–71.
Lei, F.; Liu, W.; Sun, Y.; Xu, J.; Liu, K.; Liang, L.; Yao, T.;
Pan, B.; Wei, S.; Xie, Y. Metallic Tin Quantum Sheets
ACS Paragon Plus Environment