Inorganic Chemistry
Article
̈
Addition by a Cationic Rhodium(I) Complex. Angew. Chem., Int. Ed.
2007, 46, 1901−1904. (d) Frech, C. M.; Shimon, L. J. W.; Milstein,
D. Unsaturated Rh(I) and Rh(III) Naphthyl-Based PCP Complexes.
Major Steric Effect on Reactivity. Organometallics 2009, 28, 1900−
1908. (e) Montag, M.; Efremenko, I.; Cohen, R.; Shimon, L. J. W.;
Leitus, G.; Diskin-Posner, Y.; Ben-David, Y.; Salem, H.; Martin, J. M.
L.; Milstein, D. Effect of CO on the Oxidative Addition of Arene C-H
Bonds by Cationic Rhodium Complexes. Chem. - Eur. J. 2010, 16,
328−353.
(16) Albeniz, A. C.; Schulte, G.; Crabtree, R. H. Facile reversible
metalation in an agostic complex and hydrogenolysis of a metal aryl
complex via a dihydrogen complex. Organometallics 1992, 11, 242−
249.
(17) (a) Dani, P.; Karlen, T.; Gossage, R. A.; Smeets, W. J. J.; Spek,
A. L.; van Koten, G. Replacement of a Cyclometalated Terdentate
Diamino Ligand by a Phosphorus Analogue. Isolation and Crystallo-
graphic Characterization of an Intermediate in Aryl C−H Bond
Activation in Models of Dendrimer-Bound Organometallic Catalysts.
J. Am. Chem. Soc. 1997, 119, 11317−11318. (b) Dani, P.; Toorneman,
M. A. M.; van Klink, G. P. M.; van Koten, G. Complexes of Bis-ortho-
cyclometalated Bisphosphinoaryl Ruthenium(II) Cations with Neu-
tral Meta-bisphosphinoarene Ligands Containing an Agostic C−H···
Ru Interaction. Organometallics 2000, 19, 5287−5296.
(18) McLoughlin, M. A.; Flesher, R. J.; Kaska, W. C.; Mayer, H. A.
Synthesis and Reactivity of [IrH2(tBu2P)CH2CH2CHCH2CH2P-
(tBu2)], a Dynamic Iridium Polyhydride Complex. Organometallics
1994, 13, 3816−3822.
(19) van der Boom, M. E.; Iron, M. A.; Atasoylu, O.; Shimon, L.
J.W.; Rozenberg, H.; Ben-David, Y.; Konstantinovski, L.; Martin, J. M.
L.; Milstein, D. sp3 C−H and sp2 C−H agostic ruthenium complexes:
a combined experimental and theoretical study. Inorg. Chim. Acta
2004, 357, 1854−1864.
(20) Gusev, D. G.; Madott, M.; Dolgushin, F. M.; Lyssenko, K. A.;
Antipin, M. Yu. Agostic Bonding in Pincer Complexes of Ruthenium.
Organometallics 2000, 19, 1734−1739.
(21) Barthes, C.; Lepetit, C.; Canac, Y.; Duhayon, C.; Zargarian, D.;
Chauvin, R. P(CH)P Pincer Rhodium(I) Complexes: The Key Role
of Electron-Poor Imidazoliophosphine Extremities. Inorg. Chem. 2013,
52, 48−58.
(22) Cherry, S. D. T.; Kaminsky, W.; Heinekey, D. M. Structure of a
Novel Rhodium Phosphinite Compound: Agostic Interactions as a
Model for an Oxidative Addition Intermediate. Organometallics 2016,
35, 2165−2169.
(23) Perrin, D. D.; Armarego, W. L. F. Purification of Laboratory
Chemicals, 3rd ed.; Pergamon: New York, 1988.
(24) Bruker computer programs: APEX2, SAINT and SADABS;
Bruker AXS Inc.: Madison, WI, 2015.
(25) Sheldrick, G. M. Crystal structure refinement with SHELXL.
Acta Crystallogr., Sect. C: Struct. Chem. 2015, A71, 3−8.
(26) Spek, A. L. Structure validation in chemical crystallography.
Acta Crystallogr., Sect. D: Biol. Crystallogr. 2009, D65, 148−155.
(27) Macrae, C. F.; Edgington, P. R.; McCabe, P.; Pidcock, E.;
Shields, G. P.; Taylor, R.; Towler, M.; van de Streek, J. Mercury:
visualization and analysis of crystal structures. J. Appl. Crystallogr.
2006, 39, 453−457.
D.; Farkas, O.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J.,
Gaussian 09, Revision A.02; Gaussian, Inc.: Wallingford, CT, 2009.
(29) Hehre, W. J.; Radom, L.; Schleyer, P. v. R.; Pople, J. A. Ab Initio
Molecular Orbital Theory; John Wiley & Sons, New York, 1986.
(30) Parr, R. G.; Yang, W. Density Functional Theory of Atoms and
Molecules; Oxford University Press, New York, 1989.
(31) Becke, A. D. Density-functional thermochemistry. III. The role
of exact exchange. J. Chem. Phys. 1993, 98, 5648−5652.
(32) Lee, C.; Yang, W.; Parr, R. G. Development of the Colle-
Salvetti correlation-energy formula into a functional of the electron
density. Phys. Rev. B: Condens. Matter Mater. Phys. 1988, 37, 785−789.
(33) Miehlich, B.; Savin, A.; Stoll, H.; Preuss, H. Results obtained
with the correlation energy density functionals of becke and Lee, Yang
and Parr. Chem. Phys. Lett. 1989, 157, 200−206.
(34) (a) Haeusermann, U.; Dolg, M.; Stoll, H.; Preuss, H.;
Schwerdtfeger, P.; Pitzer, R. M. Accuracy of energy-adjusted
quasirelativistic ab initio pseudopotentials. Mol. Phys. 1993, 78,
1211−1224. (b) Kuechle, W.; Dolg, M.; Stoll, H.; Preuss, H. Energy-
adjusted pseudopotentials for the actinides. Parameter sets and test
calculations for thorium and thorium monoxide H. J. Chem. Phys.
1994, 100, 7535−7542. (c) Leininger, T.; Nicklass, A.; Stoll, H.;
Dolg, M.; Schwerdtfeger, P. The accuracy of the pseudopotential
approximation. II. A comparison of various core sizes for indium
pseudopotentials in calculations for spectroscopic constants of InH,
InF, and InCl. J. Chem. Phys. 1996, 105, 1052−1059.
(35) (a) McLean, A. D.; Chandler, G. S. Contracted Gaussian basis
sets for molecular calculations. I. Second row atoms, Z = 11−18. J.
Chem. Phys. 1980, 72, 5639−5648. (b) Krishnan, R.; Binkley, J. S.;
Seeger, R.; Pople, J. A. Self-consistent molecular orbital methods. XX.
A basis set for correlated wave functions. J. Chem. Phys. 1980, 72,
650−654. (c) Wachters, A. J. H. Gaussian Basis Set for Molecular
Wavefunctions Containing Third-Row Atoms. J. Chem. Phys. 1970,
52, 1033−1036. (d) Hay, P. J. Gaussian basis sets for molecular
calculations - The representation of 3d orbitals in transition-metal
atoms. J. Chem. Phys. 1977, 66, 4377−4384. (e) Raghavachari, K.;
Trucks, G. W. Highly correlated systems. Excitation energies of first
row transition metals Sc-Cu. J. Chem. Phys. 1989, 91, 1062−1065.
(f) Binning, R. C., Jr.; Curtiss, L. A. Compact contracted basis sets for
third-row atoms: Ga−Kr. J. Comput. Chem. 1990, 11, 1206.
(g) McGrath, M. P.; Radom, L. Extension of Gaussian-1 (G1) theory
to bromine-containing molecules. J. Chem. Phys. 1991, 94, 511−516.
(36) Weinhold, F.; Carpenter, J. E. The Structure of Small Molecules
and Ions; Plenum, New York, 1988; p 227.
(37) (a) Wiberg, K. B. Application of the pople-santry-segal CNDO
method to the cyclopropylcarbinyl and cyclobutyl cation and to
bicyclobutane. Tetrahedron 1968, 24, 1083−1096. (b) Wiberg indices
are electronic parameters related with the electron density in between
two atoms, which scale as bond strength indicators. They can be
obtained from a Natural Population Analysis.
(38) Glendening, E. D.; Badenhoop, J. K.; Reed, A. E.; Carpenter, J.
E.; Bohmann, J. A.; Morales, C. M.; Weinhold, F. Theoretical
Chemistry Institute; University of Wisconsin, Madison, 2001.
(39) Portmann, S.; Lu
Molecular Graphics Tool. Chimia 2000, 54, 766−770.
̈
thi, H. P. MOLEKEL: An Interactive
(28) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.;
Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci,
B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H.
P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.;
Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.;
Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.;
Montgomery, Jr., J. A.; Peralta, J. E.; Ogliaro, F.; Bearpark, M.;
Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Kobayashi,
R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar,
S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, J. M.; Klene, M.; Knox,
J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.;
Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.;
Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.;
Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A.
G
Inorg. Chem. XXXX, XXX, XXX−XXX