6
J. Tao et al. / Journal of Organometallic Chemistry 698 (2012) 1e6
is the rate-determining step, is 27.2 kcal/mol (gas phase). Therefore,
this can elucidate that the N-heterocyclic ligand in the catalyst
affords an important internal-basic nitrogen atom (act as a Lewis
base). Thus, the nitrogen atom (as the Lewis base) and the ruthe-
nium atom (as the Lewis acid) in this bifunctional catalyst can work
cooperatively to promote the isomerization reaction.
Appendix. Supplementary Information
Supplementary Information associated with this article can be
After the formation of 5, it is the dihedral rotation with the RueP
bond acting as axis that transport the hydrogen (on the N1 atom) to
the side of the terminal allyl carbon, the corresponding transition
state is TS4. The free energy barrier of this rotational step is only
3.6 kcal/mol. Therefore, the N-heterocyclic ligand in the catalyst
also works as a transporter of hydrogen.
In general, the N-heterocyclic ligand in the bifunctional catalyst
mainly functions in the two aspects: affords an important internal-
basic center (nitrogen atom) and works as a transporterof hydrogen.
References
[1] T. Gibson, L. Tulich, J. Org. Chem. 46 (1981) 1821.
[2] S. Inoue, H. Takaya, K. Tani, S. Otsuka, T. Sato, R. Noyori, J. Am. Chem. Soc. 112
(1990) 4897.
[3] N. Iranpoor, E. Mottaghinejad, J. Organomet. Chem. 423 (1992) 399.
[4] T. Naota, H. Takaya, S.I. Murahashi, Chem. Rev. 98 (1998) 2599.
[5] E. Rüba, W. Simanko, K. Mauthner, K.M. Soldouzi, C. Slugovc, K. Mereiter,
R. Schmid, K. Kirchner, Organometallics 18 (1999) 3843.
[6] R. Uma, C. Crévisy, R. Grée, Chem. Rev. 103 (2003) 27.
ꢀ
[7] D. Markovic, P. Vogel, Angew. Chem. Int. Ed. 43 (2004) 2928.
[8] N. Kuznik, S. Krompiec, Coord. Chem. Rev. 251 (2007) 222.
[9] L. Kintermann, M. Schmitz, Adv. Synth. Catal. 350 (2008) 1469.
[10] S. Krompiec, M. Krompiec, R. Penczek, H. Ignasiak, Coord. Chem. Rev. 252
(2008) 1819.
[11] H. Fleckner, F.W. Grevels, D. Hess, J. Am. Chem. Soc. 106 (1984) 2027.
[12] M.J. Hostetler, M.D. Butts, R.G. Bergman, Organometallics 12 (1993) 65.
[13] A.B. Permin, V.S. Petrosyan, Russ. Chem. Bull. 46 (1997) 1104.
[14] G.T. Long, E. Weitz, J. Am. Chem. Soc. 122 (2000) 1431.
[15] T.C. Morrill, C.A. D’Souza, Organometallics 22 (2003) 1626.
[16] M.A. Maryam, B. Rabah, B. Mohammad, Appl. Organometal. Chem. 20 (2006)
214.
4. Conclusions
In this paper, we have carried out detailed density function
calculations to investigate the possible mechanism of the isomer-
ization of 1-pentene catalyzed by the bifunctional ruthenium
catalyst. According to our calculations, the isomerization reaction of
1-pentene to generate (E)-2-pentene is likely to proceed through
the following steps: 1) the b-H elimination to generate the ruthe-
[17] K.R. Sawyer, E.A. Glascoe, J.F. Cahoon, J.P. Schlegel, C.B. Harris, Organometallics
27 (2008) 4370.
[18] D.B. Grotjahn, C.R. Larsen, J.L. Gustafson, R. Nair, A. Sharma, J. Am. Chem. Soc.
129 (2007) 9592.
nium hydride intermediate; 2) the reductive elimination of the
hydride intermediate to generate the nitrogen-protonated allyl
intermediate; 3) the transportation of the hydrogen by the dihedral
rotation with RueP bond acting as axis; 4) the oxidative addition to
afford another hydride complex; 5) the reductive elimination of the
[19] M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb,
J.R. Cheeseman, J.A. Montgomery Jr., T. Vreven, K.N. Kudin, J.C. Burant,
J.M. Millam, S.S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi,
G. Scalmani, N. Rega, G.A. Petersson, H. Nakatsuji, M. Hada, M. Ehara,
K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao,
H. Nakai, M. Klene, X. Li, J.E. Knox, H.P. Hratchian, J.B. Cross, V. Bakken,
C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin,
R. Cammi, C. Pomelli, J.W. Ochterski, P.Y. Ayala, K. Morokuma, G.A. Voth,
P. Salvador, J.J. Dannenberg, V.G. Zakrzewski, S. Dapprich, A.D. Daniels,
M.C. Strain, O. Farkas, D.K. Malick, A.D. Rabuck, K. Raghavachari, J.B. Foresman,
J.V. Ortiz, Q. Cui, A.G. Baboul, S. Clifford, J. Cioslowski, B.B. Stefanov, G. Liu,
A. Liashenko, P. Piskorz, I. Komaromi, R.L. Martin, D.J. Fox, T. Keith, M.A. Al-
Laham, C.Y. Peng, A. Nanayakkara, M. Challacombe, P.M.W. Gill, B. Johnson,
W. Chen, M.W. Wong, C. Gonzalez, J.A. Pople, Gaussian03, revision B.04.
Gaussian, Inc., Wallingford, CT, 2004.
hydride intermediate to form the C2eC3
p-coordinated agostic
intermediate; 6) the coordination of the nitrogen to the ruthenium
center to produce the final product. For the whole reaction, the
rate-determining step is the oxidative addition step (the process of
the hydrogen moves to ruthenium atom from the nitrogen atom)
with the free energy of 31.2 kcal/mol in the acetone solvent. And
the N-heterocyclic ligand in the bifunctional ruthenium catalyst
mainly functions in the two aspects: affords an important internal-
basic center (nitrogen atom) and works as a transporter of
hydrogen. The mechanism proposed here for the isomerization of
1-pentene is expected to be general for isomerization of many other
alkene derivatives, and thus would be helpful for experimentalists
to design more effective bifunctional catalysts for isomerization of
a variety of heterofunctionalized alkene derivatives.
[20] A.D. Becke, J. Chem. Phys. 98 (1993) 5648.
[21] C. Lee, W. Yang, R.G. Parr, Phys. Rew. B. 37 (1988) 785.
[22] P.J. Hay, W.R. Wadt, J. Chem. Phys. 82 (1985) 299.
[23] W.R. Wadt, P.J. Hay, J. Chem. Phys. 82 (1985) 284.
[24] A.W. Ehlers, M. Böhme, S. Dapprich, A. Gobbi, A. Höllwarth, V. Jonas,
K.F. Köhler, R. Stegman, A. Veldkamp, G. Frenking, Chem. Phys. Lett. 208
(1993) 111.
[25] M. Couty, M.B. Hall, J. Comput. Chem. 17 (1996) 1359.
[26] A. Höllwarth, M. Böhme, S. Dapprich, A.W. Ehlers, A. Gobbi, V. Jonas,
K.F. Köhler, R. Stegmann, A. Veldkamp, G. Frenking, Chem. Phys. Lett. 208
(1993) 237.
[27] C. Gonzalez, H.B. Schlegel, J. Phys. Chem. 94 (1990) 5523.
[28] C. Gonzalez, H.B. Schlegel, J. Chem. Phys. 90 (1989) 2154.
[29] J. Tomasi, M. Persico, Chem. Rev. 94 (1994) 2027.
Acknowledgments
The calculations were performed at the Institute of Theoretical
and Computational Chemistry Nanjing University. And I will
express my gratitude to Prof. Shuhua Li for his help.