96
L. Ravichandran et al. / Journal of Molecular Catalysis A: Chemical 317 (2010) 89–96
4. Conclusions
[4] T. Tsumura, N. Kojitani, I. Izumi, N. Iwashita, M. Toyoda, M. Inagaki, J. Mater.
Chem. 12 (2003) 1391–1396.
[5] Y. Xu, W. Zheng, W. Liu, J. Photochem. Photobiol. A: Chem. 122 (1999) 57–60.
[6] K. Shimizu, T. Kaneko, T. Fujishima, T. Kodama, H. Yosida, Y. Kitayama, Appl.
Catal. A: Gen. 225 (2002) 185–191.
[7] J. Matos, J. Laine, J.M. Herrmann, J. Catal. 200 (2001) 10–20.
[8] J. Arana, J.M. Dona Rodriguez, C. Garriga i Cabo, O. Gonzalez-Diaz, J.A. Herrera-
Melian, J. Perez Pena, G. Colon, J.A. Navio, Appl. Catal. B: Environ. 44 (2003)
161–172.
[9] S.J. Tavener, J.H. Clark, J. Fluorine Chem. 123 (2003) 31–36.
[10] R. Natarajan, R. Azerad, B. Badet, E. Copin, J. Fluorine Chem. 126 (2005) 424–435.
[11] R. Renner, Environ. Sci. Technol. 35 (2001) 154A.
[12] J.P. Giesy, K. Kannan, Environ. Sci. Technol. 36 (2002) 146A–152A.
[13] K.J. Hansen, H.O. Johnson, J.S. Eldridge, J.L. Buhenhoff, L.A. Dick, Environ. Sci.
Technol. 36 (2002) 1681–1685.
[14] K. Kannan, J.W. Choi, N. Iseki, K. Senthilkumar, D.H. Kim, S. Masunaga, G.P. Giesy,
Chemosphere 49 (2002) 225–231.
[15] L. Ravichandran, K. Selvam, M. Muruganandham, M. Swaminathan, J. Fluorine
Chem. 127 (2006) 1204–1210.
[16] L. Ravichandran, K. Selvam, M. Swaminathan, Sep. Purif. Technol. 56 (2007)
192–198.
[17] L. Ravichandran, K. Selvam, M. Swaminathan, J. Photochem. Photobiol. A: Chem.
188 (2007) 392–398.
The increase in the photocatalytic activity of TiO2-P25 by the
addition of activated carbon was observed. Activated carbon was
loaded into TiO2-P25 in 4, 8, 10 and 12% by weight. These cat-
alysts were characterized by various surface analytical methods
such as BET surface area measurement, diffuse reflectance spec-
troscopy, FT-IR spectroscopy, scanning electron microscopy and
X-ray diffraction analysis. Among AC-TiO2-P25 catalysts, 10AC-
TiO2-P25 was found to be most efficient.
The experiments revealed that the defluoridation is more effec-
tive in 10AC-TiO2-P25 than bare TiO2-P25 and 254 nm is more
effective than 365 nm. Complete defluoridation was observed in
60 min with 10AC-TiO2-P25 in comparison to 90 min with bare
TiO2-P25. The higher photocatalytic defluoridation efficiency of
10AC-TiO2-P25 at neutral pH is due to synergistic effect of AC.
As experienced with other catalysts, increase of PFBA concentra-
tion decreases the defluoridation rate. The addition of inorganic
oxidants to catalyst enhances the defluoridation efficiency and
is in the following order: UV/AC-TiO2-P25/oxidants > UV/TiO2-
P25/oxidants > UV/oxidants.
[18] E. Carpio, P. Zuniga, S. Ponce, J. Solis, J. Rodriguez, W. Estrada, J. Mol. Catal. A
228 (2005) 293–298.
[19] C.G. Hatchard, C.A. Parker, Proc. R. Soc. London A 235 (1956) 518.
[20] J. Arana, J.M. Dona-Rodriguez, E. Tello-Rendon, C. Garriga-i-Cabo, O. Gonzalez-
Diaz, J.A. Herrera-Melian, J. Perez-Pena, G. Colon, J.A. Navio, Appl. Catal. B 44
(2003) 153–160.
Acknowledgements
[21] V. Brezova, M. Jankovicova, M. Soldan, A. Blazkova, M. Rehakova, I. Surina, M.
Ceppan, B. Havilinova, J. Photochem. Photobiol. A 89 (1994) 69–75.
[22] I. Bedja, S. Hotchandani, P.V. Kamat, J. Phys. Chem. 97 (1993) 11064–11070.
[23] P.A. Connor, K.D. Dobson, A.J. McQuillan, Langmuir 15 (1999) 2402–2408.
[24] E. Papirer, S. Li, J.B. Donnet, Carbon 25 (1987) 243–247.
[25] L. Wenhua, L. Hong, C. Sao’an, Z. Jianqing, C. Chunan, J. Photochem. Photobiol.
A 131 (2000) 125–132.
One of the authors, K. Selvam is thankful to CSIR, New Delhi,
for the award of Senior Research Fellowship. We thank Catalysis
Laboratory, IIT Madras, Chennai for BET measurements.
[26] H. Al-Ekabi, N. Serpone, J. Phys. Chem. 92 (1988) 5726–5731.
[27] R.W. Matthews, J. Phys. Chem. 91 (1987) 3328–3333.
[28] J. Harbour, J. Tromp, M.L. Hair, Can. J. Chem. 63 (1985) 204–208.
[29] C. Kormann, D.W. Bahnemann, M.R. Hoffmann, Environ. Sci. Technol. 22 (1988)
798–806.
[30] E. Evgenidou, K. Fytianos, I. Poulios, Appl. Catal. B 59 (2005) 81–89.
[31] L. Ravichandran, K. Selvam, B. Krishnakumar, M. Swaminathan, J. Hazard. Mater
167 (2009) 763–769.
References
[1] S. Sakthivel, S.U. Geissen, D.W. Bahnemann, V. Murugesan, A. Vogelpohl, J.
Photochem. Photobiol. A: Chem. 148 (2002) 283–293.
[2] A. Dipaola, E. Garicia-Lopez, S. Ikeda, G. Marci, B. Ohtani, L. Palmisano, Catal.
Today 75 (2002) 87–93.
[3] R.L. Pozzo, M.A. Baltanas, A.E. Cassano, Catal. Today 39 (1997) 219–231.