Compound 4a. Yield 0.72 g (28%). Rf 0.38 (MeCN); mp 139-141°С (decomp., MeCN). IR spectrum, ν,
cm-1: 1462, 1518, 1578, 1598, 1655, 2929. UV spectrum, λmax, nm (log ε): 307 (4.20), 360 (4.08), 598 (4.05). 1H
NMR spectrum, δ, ppm (J, Hz): 1.33 (6Н, t, 3J = 7.2, 2СН3СН2); 3.49 (4Н, q, 3J = 7.2, 2СН3СН2); 5.76 (1Н, d,
3J = 13.0, NCН=CH); 7.56 (1Н, dd, 3J = 7.7, 3J = 4.7, Н-3); 8.33 (1Н, d, 3J = 7.7, Н-4); 8.49 (1Н, d, 3J = 13.0,
NCH=CН); 8.99 (1Н, d, 3J = 4.7, Н-2). Found, %: С 61.46; Н 4.99; N 9.40. C15H15C1N2O2. Found, %: С 61.97;
Н 5.20; N 9.63.
(E)-6-Chloro-7-[2-(N,N-diethylamino)vinyl]isoquinoline-5,8-dione (3b) and (E)-7-Chloro-6-[2-(N,N-di-
ethylamino)vinyl]isoquinoline-5,8-dione (4b). 6,7-Dichloroisoquinoline-5,8-dione (2b) (2 g, 8.8 mmol) was
dissolved in CH2Cl2 (50 ml). At room temperature, acetaldehyde (0.43 ml, 8.8 mmol) was added to the solution.
Then Et2NH (1.82 ml, 17.6 mmol) was added dropwise over 10 min. The reaction mixture was then treated
similarly to the method used for the preparation of compounds 3a and 4a. Yield 1.45 g (57%). The mixture of
isomers could not be separated. Rf 0.68 (both isomers, MeCN). 1H NMR spectrum (mixture of isomers, 2:1), δ,
ppm (J, Hz): 1.24-1.36 (6Н, m, 2СН3СН2 (both isomers)); 3.50 (2.67Н, q, 3J = 7.2, 2СН3СН2 (major isomer));
3.68 (1.33Н, q, 3J = 7.2, 2СН3СН2 (minor isomer)); 5.75 (0.33Н, d, 3J = 12.5, NCН=CH (minor isomer)); 5.85
(0.67Н, d, 3J = 12.8, NCН=CH (major isomer)); 8.08 (1Н, br. s, Н-4 (both isomers)); 8.50 (0.33Н, d, 3J = 12.5,
3
3
NCH=CН (minor isomer)); 8.60 (0.67Н, d, J = 12.8, NCH=CН (major isomer)); 8.96 (1Н, d, J = 5.2, Н-3
(both isomers)); 9.23 (0.67Н, br. s, Н-1 (major isomer)); 9.36 (0.33Н, br. s, Н-1 (minor isomer)). Found, %:
С 61.97; Н 5.08; N 9.52. C15H15C1N2O2. Calculated, %: С 61.97; Н 5.20; N 9.63.
X-ray Structural Analysis of Compound 3a. The single crystals of compound 3a, obtained by
crystallization from MeCN, are monoclinic. Crystal lattice parameters: a 7.9517(2), b 19.2140(6), c 9.5620(3)
Å; β 112.185(1)°, V 1352.77(7) Å3; F(000) 608; μ 0.285 mm-1; dcalc 1.428 g·cm-3; Z = 4; space group P21/c. The
intensities of 3231 independent reflections were measured to 2θmax = 56° at -80°C. In the calculations, 2235
reflections with I > 2σ(I) were used. The structure was interpreted with SHELXS97 software [10] and refined
with the least-squares method in full-matrix anisotropic approximation with the SHELXL97 software [10]. The
final probability factor was R 0.0983. All information on the crystal structure has been deposited at the
Cambridge Crystallographic Data Center (deposition CCDC 865657).
The work was carried out with financial support from the Latvian Council of Science (grant 09/1617)
and the European Regional Development Fund (2DP/2.1.1.2.0/10/APIA/VIAA/003).
REFERENCES
1.
2.
L. Garuti, M. Roberti, and D. Pizzirani, Mini-Rev. Med. Chem., 7, 481 (2007).
J. S. Lazo, D. C. Aslan, E. C. Southwick, K. A. Cooley, A. P. Ducruet, B. Joo, A. Vogt, and P. Wipf,
J. Med. Chem., 44, 4042 (2001).
3.
N. G. Batenko, G. Karlivans, and R. Valters, Khim. Geterotsikl. Soedin., 803 (2005). [Chem.
Heterocycl. Compd., 41, 691 (2005)].
4.
5.
N. G. Batenko, G. A. Karlivans, and R. E. Valters, Heterocycles, 65, 1569 (2005).
N. G. Batenko, R. Valters, and G. Karlivans, Khim. Geterotsikl. Soedin., 835 (2000). [Chem. Heterocycl.
Compd., 36, 733 (2000)].
6.
7.
8.
I. A. Shaikh, F. Johnson, and A. P. Grollman, J. Med. Chem., 29, 1329 (1986).
A. Defant, G. Guella, and I. Mancini, Eur. J. Org. Chem., 4201 (2006).
E. Y. Yoon, H. Y. Choi, K. J. Shin, K. H. Yoo, D. Y. Chi, and D. J. Kim, Tetrahedron Lett., 41, 7475
(2000).
9.
10.
H. Y. Choi, D. W. Kim, and D. Y. Chi, J. Org. Chem., 67, 5390 (2002).
G. M. Sheldrick, Acta Crystallogr., Sect. A: Found. Crystallogr., A64, 112 (2008).
891