O. Seiler, R. Bertermann, N. Buggisch, C. Burschka, M. Penka, D. Tebbe, R. Tacke
Ϫ20 °C); cis-4, crystallization from THF/n-pentane (1:1 (v:v)) at
0 °C. The crystals were mounted in inert oil (perfluoroalkyl ether,
ABCR) on a glass fiber and then transferred to the cold nitrogen
[5] Recent publications dealing with compounds of higher-coordi-
nate silicon: (a) R. Tacke, M. Penka, F. Popp, I. Richter, Eur.
J. Inorg. Chem. 2002, 1025. (b) A. Biller, C. Burschka, M.
Penka, R. Tacke, Inorg. Chem. 2002, 41, 3901. (c) I. Richter,
M. Penka, R. Tacke, Inorg. Chem. 2002, 41, 3950. (d) I.
Richter, M. Penka, R. Tacke, Organometallics 2002, 21, 3050.
(e) O. Seiler, C. Burschka, M. Penka, R. Tacke, Z. Anorg. Allg.
Chem. 2002, 628, 2427. (f) O. Seiler, C. Burschka, M. Penka,
R. Tacke, Silicon Chemistry, in press. (g) R. Tacke, R. Berterm-
ann, A. Biller, C. Burschka, M. Penka, Can. J. Chem., submit-
ted. (h) R. Bertermann, A. Biller, M. Kaupp, M. Penka, O.
Seiler, R. Tacke, Organometallics, submitted.
2
gas stream of the diffractometer (Stoe IPDS diffractometer; graph-
˚
ite-monochromated MoK
α
radiation, λ ϭ 0.71073 A). The struc-
3
tures were solved by direct methods (1, ref. [16a]; 2, 3·2CH CN,
and cis-4, ref. [16b]). The non-hydrogen atoms were refined aniso-
tropically [17]. A riding model was employed in the refinement of
the CH hydrogen atoms. Crystallographic data (excluding structure
factors) for the structures reported in this paper have been de-
posited with the Cambridge Crystallographic Data Centre as sup-
plementary publication nos. CCDC-206855 (1), CCDC-206856 (2),
CCDC-206857 (3·2CH
the data can be obtained free of charge on application to CCDC,
3
CN), and CCDC-206858 (cis-4). Copies of
[6] Selected reviews dealing with compounds of higher-coordinate
silicon: (a) S. N. Tandura, M. G. Voronkov, N. V. Alekseev,
Top. Curr. Chem. 1986, 131, 99. (b) W. S. Sheldrick, in: The
Chemistry of Organic Silicon Compounds, Part 1, S. Patai, Z.
Rappoport (eds.), Wiley, Chichester, U.K., 1989, pp. 227Ϫ303.
12 Union Road, Cambridge CB2 1EZ, UK (fax: (ϩ44) 1223/
336033; e-mail: deposit@ccdc.cam.ac.uk).
(
c) A. R. Bassindale, P. G. Taylor, in: The Chemistry of Organic
Computational Studies. RI-MP2 [10] geometry optimizations of 1,
2Ϫ
Silicon Compounds, Part 1, S. Patai, Z. Rappoport (eds.),
Wiley, Chichester, U.K., 1989, pp. 839Ϫ892. (d) R. J. P. Corriu,
J. C. Young, in: The Chemistry of Organic Silicon Compounds,
Part 2, S. Patai, Z. Rappoport (eds.), Wiley, Chichester, U.K.,
1989, pp. 1241Ϫ1288. (e) R. R. Holmes, Chem. Rev. 1990, 90,
[Si(NCS)
6
]
, cis-4, and trans-4 were carried out at the TZP level
(with a TZVP auxiliary basis for the fit of the charge density)
[11,12] using the TURBOMOLE program system [13]. The calcu-
lations were performed starting from the following symmetries: T
d
2Ϫ
2Ϫ
(
(
(
1), O
h 6 s 6 2 i
([Si(NCS) ] ), C (“bent” [Si(NCS) ] ), C (cis-4), and C
1
7. (f) C. Chuit, R. J. P. Corriu, C. Reye, J. C. Young, Chem.
trans-4). The optimized structures were characterized as minima
the “bent” [Si(NCS)
2Ϫ
Rev. 1993, 93, 1371. (g) R. Tacke, J. Becht, A. Lopez-Mras, J.
Sperlich, J. Organomet. Chem. 1993, 446, 1. (h) J. G. Verkade,
Coord. Chem. Rev. 1994, 137, 233. (i) R. Tacke, O. Dannappel,
in: Tailor-made Silicon-Oxygen Compounds Ϫ From Molecules
to Materials, R. Corriu, P. Jutzi (eds.), Vieweg, Braunschweig-
Wiesbaden, Germany, 1996, pp. 75Ϫ86. (j) E. Lukevics, O. A.
Pudova, Chem. Heterocycl. Compd. (Engl. Transl.) 1996, 32,
6
]
dianion is not a minimum because the
SiϪNϪC angles were fixed during the optimization) on the poten-
tial energy surfaces by harmonic vibrational frequency analysis.
The calculations of the 29Si NMR chemical shifts for the optimized
2Ϫ
6
structures of 1, [Si(NCS) ] , cis-4, and trans-4 were carried out at
the HF/TZP level using the module mpshift implemented in TUR-
BOMOLE. Computed absolute shieldings (σ) were converted to
relative shifts (δ) using the shielding of TMS (399.4 ppm), com-
puted at the same theoretical level. The reported energy differences
include the MP2 and zero-point vibrational energies obtained by
HF calculations.
1
381. (k) R. R. Holmes, Chem. Rev. 1996, 96, 927. (l) D. Kost,
I. Kalikhman, in: The Chemistry of Organic Silicon Com-
pounds, Vol. 2, Part 2, Z. Rappoport, Y. Apeloig (eds.), Wiley,
Chichester, U.K., 1998, pp. 1339Ϫ1445. (m) V. Pestunovich, S.
Kirpichenko, M. Voronkov, in: The Chemistry of Organic Sili-
con Compounds, Vol. 2, Part 2, Z. Rappoport, Y. Apeloig
Acknowledgment. We thank the Deutsche Forschungsgemeinschaft
and the Fonds der Chemischen Industrie for financial support.
(
eds.), Wiley, Chichester, U.K., 1998, pp. 1447Ϫ1537. (n) C.
Chuit, R. J. P Corriu, C. Reye, in: Chemistry of Hypervalent
Compounds, K. Akiba (ed.), Wiley-VCH, New York, 1999, pp.
81Ϫ146. (o) R. Tacke, M. Pülm, B. Wagner, Adv. Organomet.
Chem. 1999, 44, 221. (p) M. A. Brook, Silicon in Organic, Or-
ganometallic, and Polymer Chemistry, Wiley, New York, 2000,
pp. 97Ϫ114.
References and Notes
[1] Recent review dealing with penta- and hexacoordinate sili-
con(IV) complexes with SiO and SiO skeletons: R. Tacke,
5
6
[7] O. Seiler, N. Buggisch, M. Penka, R. Tacke, XIII International
Symposium on Organosilicon Chemistry Ϫ 35th Organosilicon
Symposium, Guanajuato, Mexico, August 25Ϫ30, 2002, Ab-
stracts Book, Abstract P2-45, p. 161.
O. Seiler, in: Silicon Chemistry: From Molecules to Extended
Systems, P. Jutzi, U. Schubert (eds.), Wiley-VCH, Weinheim,
in press.
[
2] Publications dealing with hexacoordinate silicon(IV) com-
[8] The quality of the crystal structure analysis described in this
paper is significantly better than that reported in ref. [2b].
[9] Attempts to obtain solution NMR spectra of 1 and the
6
plexes with SiN skeletons: (a) E. Bär, W. P. Fehlhammer, D.
K. Breitinger, J. Mink, Inorg. Chim. Acta 1984, 82, L17. (b)
W. Heininger, R. Stucka, G. Nagorsen, Z. Naturforsch. 1986,
2
Ϫ
[Si(NCS)
6
]
3
dianion of 2 and 3·2CH CN were unsuccessful.
4
1b, 702. (c) W. Heininger, K. Polborn, G. Nagorsen, Z. Na-
[10] (a) F. Weigend, M. Häser, Theor. Chem. Acc. 1997, 97, 331.
(b) F. Weigend, M. Häser, H. Patzelt, R. Ahlrichs, Chem. Phys.
Lett. 1998, 294, 143.
[11] A. Schäfer, H. Horn, R. Ahlrichs, J. Chem. Phys. 1992, 97,
2571.
turforsch. 1988, 43b, 857. (d) M. Fritz, D. Rieger, E. Bär, G.
Beck, J. Fuchs, G. Holzmann, W. P. Fehlhammer, Inorg. Chim
Acta 1992, 198Ϫ200, 513. (e) A. C. Filippou, P. Portius, G.
Schnakenburg, J. Am. Chem. Soc. 2002, 124, 12396.
[
[
3] Synthesis of 1: R. G. Neville, J. J. McGee, in: Inorganic Syn-
theses, Vol. VIII, H. F. Holtzclaw, Jr. (ed.), McGraw-Hill, New
York, 1966, pp. 27Ϫ31.
4] Alternative synthesis and solution NMR studies of 4: S. P.
Narula, R. Shankar, B. Kaur, S. Soni, Polyhedron 1991, 10,
[12] A. Schäfer, C. Huber, R. Ahlrichs, J. Chem. Phys. 1994, 100,
5829.
[13] Program system TURBOMOLE: R. Ahlrichs, M. Bär, M.
Häser, H. Horn, C. Kölmel, Chem. Phys. Lett. 1989, 162, 165.
[14] A perfect agreement between the calculated and experimen-
2
Ϫ
2463.
tally established structures of 1, [Si(NCS)
6
] , and cis-4 cannot
1410
2003 WILEY-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim
zaac.wiley-vch.de Z. Anorg. Allg. Chem. 2003, 629, 1403Ϫ1411