Communication
ChemComm
Conflicts of interest
There are no conflicts to declare.
Notes and references
1
2
3
K. Stefkova, J. Prochazkova and J. Pachernik, Stem Cells Int., 2015,
1, 628368.
K. Ooi, K. Shiraki, Y. Morishita and T. Nobori, J. Clin. Lab. Anal.,
007, 21, 133–139.
M. Kawaguchi, K. Hanaoka, T. Komatsu, T. Terai and T. Nagano,
Bioorg. Med. Chem. Lett., 2011, 21, 5088–5091.
1
2
4
5
Y. Choi, N. H. Ho and C. H. Tung, Angew. Chem., Int. Ed., 2007, 46, 707–709.
Z. Gao, K. Deng, X. D. Wang, M. Miro and D. Tang, ACS Appl. Mater.
Interfaces, 2014, 6, 18243–18250.
6
7
T. Wu, Z. Ma, P. Li, M. Liu, X. Liu, H. Li, Y. Zhang and S. Yao,
Talanta, 2019, 202, 354–361.
S. Goggins, C. Naz, B. J. Marsh and C. G. Frost, Chem. Commun.,
2015, 51, 561–564.
Fig. 4 The F563/F430 of the proposed sensing system upon addition of
ALP (8 mU mL ) and the control enzymes/proteins (80 mU mL ).
À1
À1
8 K. Ino, Y. Kanno, T. Arai, K. Y. Inoue, Y. Takahashi, H. Shiku and
T. Matsue, Anal. Chem., 2012, 84, 7593–7598.
9
C. Chen, D. Zhao, B. Wang, P. Ni, Y. Jiang, C. Zhang, F. Yang, Y. Lu
and J. Sun, Anal. Chem., 2020, 92, 4639–4646.
1
0 C. Chen, G. Zhang, P. Ni, Y. Jiang, Y. Lu and Z. Lu, Microchim. Acta,
019, 186, 348.
1 X. Wu, Y. Diao, C. Sun, J. Yang, Y. Wang and S. Sun, Talanta, 2003, 59,
5–99.
To further validate the potential applicability of this ratio 12 A. Ingram, B. D. Moore and D. Graham, Bioorg. Med. Chem. Lett.,
2
ALP determination of this proposed ratio fluorometric bioassay
1
(Fig. S11, ESI†).
9
2009, 19, 1569–1571.
fluorescence method, we tested ALP in practical serum samples
by using the standard addition method. As displayed in
Table S2 (ESI†), the recoveries range from 98.0% to 105.0%
with a relative standard deviation (RSD) of 1.20–3.40%, indicat-
ing the potential accuracy and reliability of this ratio fluoro-
metric bioassay for ALP activity analysis in real samples. It is
worth noting that our developed ratio fluorometric system
could be extended to sensitively screen inhibitors of ALP by
using Na VO as the inhibitor model. As depicted in Fig. S12
1
1
3 H. Liu, M. Li, Y. Xia and X. Ren, ACS Appl. Mater. Interfaces, 2017, 9, 120–126.
4 Q. Li, C. Wang, H. Tan, G. Tang, J. Gao and C.-H. Chen, RSC Adv.,
2016, 6, 17811–17817.
5 J. Liu, D. Tang, Z. Chen, X. Yan, Z. Zhong, L. Kang and J. Yao,
Biosens. Bioelectron., 2017, 94, 271–277.
6 Z. Qian, L. Chai, C. Tang, Y. Huang, J. Chen and H. Feng, Anal.
Chem., 2015, 87, 2966–2973.
7 K. Zhang, H. Zhou, Q. Mei, S. Wang, G. Guan, R. Liu, J. Zhang and
Z. Zhang, J. Am. Chem. Soc., 2011, 133, 8424–8427.
1
1
1
1
1
2
2
2
2
2
8 D. Gong, S. C. Han, A. Iqbal, J. Qian, T. Cao, W. Liu, W. Liu, W. Qin
and H. Guo, Anal. Chem., 2017, 89, 13112–13119.
9 M. Wang, S. Wang, X. Xie and X. Su, ACS Appl. Nano Mater., 2020, 3,
3
4
(
ESI†), the IC50 value (concentrations of inhibitor when the ALP
6
034–6042.
activity is inhibited by 50%) was calculated to be 24.21 mM,
0 P. K. Mehta, G. W. Hwang, J. Park and K.-H. Lee, Anal. Chem., 2018,
90, 11256–11264.
1 M. Cai, C. Ding, F. Wang, M. Ye, C. Zhang and Y. Xian, Biosens.
Bioelectron., 2019, 137, 148–153.
2 X. L. Zhang, C. Zheng, S. S. Guo, J. Li, H. H. Yang and G. Chen, Anal.
Chem., 2014, 86, 3426–3434.
3 T. Xiao, J. Sun, J. Zhao, S. Wang, G. Liu and X. Yang, ACS Appl. Mater.
Interfaces, 2018, 10, 6560–6569.
3
3
which is in good agreement with the previous report.
In conclusion, we proposed a ratio fluorometric sensing
platform to sense ALP activity based on the novel conversion
from one fluorescent signal precursor to two fluorescent signal
indicators using the superior oxidation capability of MnO2
nanosheets. Due to the indirect mediation effect of target ALP
4 J. He, X. Jiang, P. Ling, J. Sun and F. Gao, ACS Omega, 2019, 4, 8282–8289.
to the generation of the intermediate AA and the fluorescent 25 S. He, B. Song, D. Li, C. Zhu, W. Qi, Y. Wen, L. Wang, S. Song,
H. Fang and C. Fan, Adv. Funct. Mater., 2010, 20, 453–459.
6 W. Zhai, C. Wang, P. Yu, Y. Wang and L. Mao, Anal. Chem., 2014, 86,
signal of DFQ as well as the decrease of the fluorescent signal of
oxOPD, the developed ratio fluorometric system exhibited
2
12206–12213.
robust ratiometric fluorescence response to ALP activity with 27 G. Zhang, L. Ren, Z. Yan, L. Kang, Z. Lei, H. Xu, F. Shi and Z. H. Liu,
Chem. Commun., 2017, 53, 2950–2953.
8 Y. Liu, M. Pan, W. Wang, Q. Jiang, F. Wang, D. Pang and X. Liu,
Anal. Chem., 2019, 91, 2086–2092.
high selectivity and sensitivity. Since this ratio fluorometric
strategy for ALP sensing exhibits good simplicity, low cost and
2
popular operation, it will hold great potential in the biological 29 J. Yang, Q. Ma, F. Huang, L. Sun and J. Dong, Anal. Lett., 1998, 31,
2
757–2766.
0 D. Zhao, J. Li, C. Peng, S. Zhu, J. Sun and X. Yang, Anal. Chem., 2019,
1, 2978–2984.
sensing field and other analysis fields.
3
The authors gratefully acknowledge the financial support
9
from the National Natural Science Foundation of China 31 A. Kokado, H. Arakawa and M. Maeda, Anal. Chim. Acta, 2000, 407,
1
19–125.
(
(
22064014, 21765013), the Key Talent Project of Gansu Province
2019-115, 2019-39) and the Feitian Scholar Program of Gansu
3
3
2 X. Li, L. Zhu, Y. Zhou, H. Yin and S. Ai, Anal. Chem., 2017, 89, 2369–2376.
3 J. Zhao, S. Wang, S. Lu, X. Bao, J. Sun and X. Yang, Anal. Chem.,
2018, 90, 7754–7760.
Province.
This journal is © The Royal Society of Chemistry 2021
Chem. Commun., 2021, 57, 4444–4447 | 4447