fluorines) was prepared with the aim of changing the polarity
of pentacene to n-type;4b however, pentacene disproportion-
ation occurred during sublimation for purification and
fabrication.5 The development of thermally and chemically
stable organic materials is thus necessary.
Scheme 1. Attempted Synthesis of 6F-HBC by
Cyclotrimerization
Hexa-peri-hexabenzocoronene (HBC) derivatives,6 pio-
neered by Mu¨llen and co-workers,7 show a very high
chemical stability. The rigidity and planarity of their
π-conjugated cores results in self-assembly of the molecules,
leading to high carrier mobility. With the addition of
functional groups around the periphery, HBCs have been
shown to exhibit solubility, discotic liquid crystallinity, and
additional intermolecular interactions that result in the
formation of columnar stacks.8 The formation of a decyloxy-
and fluorine-substituted HBC (2,5,8,11,14,17-hexakis(decyl-
oxy)-1,3,4,6,7,9,10,12,13,15,16,18-dodecafluoro-hexa-peri-
hexabenzocoronene)9 and perfluoroalkyl-substituted HBCs10
has also been reported. HBC and alkyl-substituted HBCs
exhibit p-type OFET activity,11 whereas fluorine-substituted
HBCs will be expected to show n-type performance. We are
interested in the development of n-type HBCs and report
herein the synthesis, thermostability, and n-type activity of
a new fluorine-substituted HBC that possesses only hydro-
and fluoro-substituents.
We attempted to synthesize 2,5,8,11,14,17-hexafluoro-
hexa-peri-hexabenzocoronene, 6F-HBC, by a well-estab-
lished method7c that involved cobalt-catalyzed cyclotrimer-
ization of 4,4′-difluorodiphenylacetylenes 112 to hexakis(4-
fluorophenyl)benzene 2 (Scheme 1). Although cyclotrimer-
ization of bis(4-trifluoromethylphenyl)acetylenes had previ-
ously been achieved by Jenny’s group,10b in this case 1 did
not react and was recovered. Consequently, another method
via cyclopentadienone was used (Scheme 2).7c Tetrakis(4-
fluorophenyl)cyclopentadienone 313 was prepared by an
Knoevenagel condensation with 1,3-bis(4-fluorophenyl)-2-
propanone and 4,4′-difluorobenzil; Diels-Alder reaction with
1 and 3 gave 2 in 72% yield. Compound 6F-HBC was
obtained by cyclodehydrogenation with FeCl3 (47% yield)
and with AlCl3/Cu(OTf)2 (64%), in contrast to the reaction
of hexakis(4-trifluoromethylphenyl)benzene, which showed
no reaction with either FeCl3 or AlCl3/Cu(OTf)2.10b It can
be seen that, in contrast to the trifluoromethyl substituents,
the fluorine substituents of 2 do not preclude this Scholl-
type cyclodehydrogenation to extend the π-conjugated
system.10
Because 6F-HBC was insoluble in common organic
solvents, it was purified by sublimation to give a yellow
powder that was identified by elemental analysis. The product
was also analyzed using MALDI-TOF MS. Signals at m/z
) 630 were observed in both positive and negative mode;
these were assigned as M•+ and M•-, respectively. These
data indicate that highly pure 6F-HBC was obtained and
confirm the absence of insufficiently reacted byproducts.14
The thermostability of 6F-HBC was estimated by thermo-
gravimetric analysis (TGA). The results were slightly inferior
to those obtained for HBC, but the weight loss at 500 °C
(5) Roberson, L. B.; Kowalik, J.; Tolbert, L. M.; Kloc, C.; Zeis, R.; Chi,
X.; Fleming, R.; Wilkins, C. J. Am. Chem. Soc. 2005, 127, 3069.
(6) (a) Iyer, V. S.; Wehmeier, M.; Brand, J. D.; Keegstra, M. A.; Mu¨llen,
K. Angew. Chem., Int. Ed. 1997, 36, 1604. (b) Watson, M. D.; Fechtenko¨tter,
A.; Mu¨llen, K. Chem. ReV. 2001, 101, 1267. (c) Grimsdale, A. C.; Mu¨llen,
K. Angew. Chem., Int. Ed. 2005, 44, 5592. (d) Wu, J.; Pisula, W.; Mu¨llen,
K. Chem. ReV. 2007, 107, 718.
(7) (a) Herwig, P.; Kayser, C. W.; Mu¨llen, K.; Spiess, H. W. AdV. Mater.
1996, 8, 510. (b) Schmidt-Mende, L.; Fechtenko¨tter, A.; Mu¨llen, K.; Moons,
E.; Friend, R. H.; MacKenzie, J. D. Science 2001, 293, 1119. (c)
Fechtenko¨tter, A.; Tchebotareva, N.; Watson, M.; Mu¨llen, K. Tetrahedron
2001, 57, 3769. (d) Pisula, W.; Kastler, M.; Wasserfallen, D.; Pakula, T.;
Mu¨llen, K. J. Am. Chem. Soc. 2004, 126, 8074. (e) Kastler, M.; Pisula, W.;
Wasserfallen, D.; Pakula, T.; Mu¨llen, K. J. Am. Chem. Soc. 2005, 127,
4286. (f) Breiby, D. W.; Bunk, O.; Pisula, W.; Sφlling, T. I.; Tracz, A.;
Pakula, T.; Mu¨llen, K.; Nielsen, M. M. J. Am. Chem. Soc. 2005, 127, 11288.
(8) (a) Lee, M.; Kim, J.-W.; Peleshanko, S.; Larson, K.; Yoo, Y.-S.;
Vaknin, D.; Markutsya, S.; Tsukruk, V. V. J. Am. Chem. Soc. 2002, 124,
9121. (b) Hill, J. P.; Jin, W.; Kosaka, A.; Fukushima, T.; Ichihara, H.;
Shimomura, T.; Ito, K.; Hashizume, T.; Ishii, N.; Aida, T. Science 2004,
304, 1481. (c) Yamamoto, Y.; Fukushima, T.; Jin, W.; Kosaka, A.; Hara,
T.; Nakamura, T.; Saeki, A.; Seki, S.; Tagawa, S.; Aida, T. AdV. Mater.
2006, 18, 1297. (d) Zhang, G.; Jin, W.; Fukushima, T.; Kosaka, A.; Ishii,
N.; Aida, T. J. Am. Chem. Soc. 2007, 129, 719. (e) Yamamoto, Y.;
Fukushima, T.; Saeki, A.; Seki, S.; Tagawa, S.; Ishii, N.; Aida, T. J. Am.
Chem. Soc. 2007, 129, 9276.
(9) Zhang, Q.; Prins, P.; Jones, S. C.; Barlow, S.; Kondo, T.; An, Z.;
Siebbeles, L. D. A.; Marder, S. R. Org. Lett. 2005, 7, 5019.
(10) (a) Spraul, B. K.; Suresh, S.; Glaser, S.; Perahia, D.; Ballato, J.;
Smith, D. W., Jr. J. Am. Chem. Soc. 2004, 126, 12772. (b) Alameddine,
B.; Aebischer, O. F.; Amrein, W.; Donnio, B.; Deschenaux, R.; Guillon,
D.; Savary, C.; Scanu, D.; Scheidegger, O.; Jenny, T. A. Chem. Mater.
2005, 17, 4798.
(11) (a) van de Craats, A. M.; Warman, J. M.; Fechtenko¨tter, A.; Brand,
J. D.; Harbison, M. A.; Mu¨llen, K. AdV. Mater. 1999, 11, 1469. (b) van de
Craats, A. M.; Stutzmann, N.; Bunk, O.; Nielsen, M. M.; Watson, M.;
Mu¨llen, K.; Chanzy, H. D.; Sirringhaus, H.; Friend, R. H. AdV. Mater. 2003,
15, 495. (c) Mori, T.; Takeuchi, H.; Fujikawa. H. J. Appl. Phys. 2005, 97,
066102.
(13) Elce, E.; Hay, A. S. J. Polym. Sci., Part A: Polym. Chem. 1995,
(12) Mio, M. J.; Kopel, L. C.; Braun, J. B.; Gadzikwa, T. L.; Hull, K.
L.; Brisbois, R. G.; Markworth, C. J.; Grieco, P. A. Org. Lett. 2002, 4,
3199.
33, 1143.
(14) Feng, X.; Wu, J.; Enkelmann, V.; Mu¨llen, K. Org. Lett. 2006, 8,
1145.
4818
Org. Lett., Vol. 9, No. 23, 2007