Con cise Syn th esis of 4-Acyla m in o An a logu es of
-Am in obicyclo[3.1.0]h exa n e-2,6-d ica r boxylic Acid s (LY354740)
fr om a n Acyln itr oso Diels-Ald er Cycloa d d u ct
2
Wenlin Lee and Marvin J . Miller*
Department of Chemistry and Biochemistry, University of Notre Dame, 251 Nieuwland Science Hall,
Notre Dame, Indiana 46556-5670
Received March 26, 2004
Concise total syntheses of 4-acylamino analogues of LY354740 were accomplished employing an
N-Boc acylnitroso Diels-Alder cycloadduct as the starting material. The syntheses involved N-O
bond cleavage, oxidation, intermolecular cyclopropanation, Bucherer-Bergs reaction, hydrolysis,
and regioselective acylation with a temporary copper chelate. The synthesis of an optically active
compound was also achieved.
In tr od u ction
L-Glutamic acid (L-Glu) is the primary excitatory
neurotransmitter in the mammalian central nervous
system. It participates in a variety of brain functions such
as learning and memory, control of movements, and pain
sensitivity. Therefore, dysfunctional glutamate neu-
rotransmission has been implicated in brain disorders
1
2
The previously reported synthesis of compound 1
involved a 14-step sequence starting with cyclopropana-
tion of cyclopentenone, installation of a â-hydroxyl group
through a Saegusa oxidation, followed by epoxidation and
epoxide opening. The resultant intermediate was then
subjected to Bucherer-Bergs reaction followed by hy-
drolysis and reprotection to construct the amino acid
moiety, conversion of the hydroxyl group to an azide, and
finally reduction of the azide and derivatization of the
resulting amine (Scheme 1).13
such as Alzheimer’s disease, anxiety, and schizophre-
nia.3 The neuronal effects of L-Glu are mediated by
two heterogeneous families of cell membrane-assoc-
iated receptors, the ionotropic (ion-channel-linked) gluta-
mate receptors and the metabotropic (G-protein-coup-
1
4
led) glutamate receptors.4,5 There are currently eight
known subtypes of metabotropic glutamate receptors
(
mGluR1-8) which can be classified into three sub-
groups (groups I-III) on the basis of their sequence
similarities.4
,6-9
A number of conformationally con-
strained analogues of L-Glu have been designed and
synthesized to elucidate the conformational requirement
for the activation of different receptor types.10 These
efforts have resulted in the discovery of several potent
(
11) (a) Monn, J . A.; Valli, M. J .; J ohnson, B. G.; Salhoff, C. R.;
Wright, R. A.; Howe, T.; Bond, A.; Lodge, D.; Griffey, K.; Tiaazno, J .
P.; Schoepp, D. D. J . Med. Chem. 1996, 39, 2990. (b) Monn, J . A.; Valli,
M. J .; Massey, S. M.; Wright, R. A.; Salhoff, C. R.; J ohnson, B. G.;
Howe, T.; Alt, C. A.; Rhodes, G. A.; Robey, R. L.; Griffey, K. R.; Tiaazno,
J . P.; Kallman, M. J .; Helton, D. R.; Schoepp, D. D. J . Med. Chem.
1997, 40, 528. (c) Dominguez, C.; Ezquerra, J .; Baker, S. R.; Borrelly,
S.; Prieto, L.; Espada, M.; Pedregal, C. Tetrahedron Lett. 1998, 39,
and selective agonists for group II metabotropic glutamate
receptors,8
,11
including acylamino derivatives (1) of
LY354740.1
1a,b,12,13
9
305. (d) Tsujishima, H.; Nakatani, K.; Shimamoto, K.; Shigeri, Y.;
Yumoto, N.; Ohfune, Y. Tetrahedron Lett. 1998, 39, 1193. (e) Monn, J .
A.; Valli, M. J .; Massey, S. M.; Hansen, M. M.; Kress, T. J .; Wepsiec,
J . P.; Harkness, A. R.; Grutsch, J . L., J r.; Wright, R. A.; J ohnson, B.
G.; Andis, S. L.; Kingston, A.; Tomlinson, R.; Lewis, R.; Griffey, K. R.;
Tiaazno, J . P.; Schoepp, D. D. J . Med. Chem. 1999, 42, 1027. (f)
Nakazato, A.; Kumagai, T.; Sakagami, K.; Yoshikawa, R.; Suzuki, Y.;
Chaki, S.; Ito, H.; Taguchi, T.; Nakanishi, S.; Okuyama, S. J . Med.
Chem. 2000, 43, 4893. (g) Pedregal, C.; Prowse, W. Bioorg. Med. Chem.
2002, 10, 433. (h) Conti, P.; De Amici, M.; Roda, G.; Vistoli, G.;
Stensbol, T. B.; Br a¨ uner-Osborne, H.; Madsen, U.; Toma, L.; De
Micheli, C. Tetrahedron 2003, 59, 1443. (i) Pajouhesh, H.; Curry, K.;
Pajouhesh, H.; Meresht, M. H.; Patrick, B. Tetrahedron: Asymmetry
2003, 14, 593.
(12) Schoepp, D. D.; J ohnson, B. G.; Wright, R. A.; Salhoff, C. R.;
Mayne, N. G.; Wu, S.; Cockerham, S. L.; Burnett, J . P.; Belagaje, R.;
Bleakman, D.; Monn, J . A. Neuropharmacology 1997, 36, 1.
(13) (a) Massey, S. M.; Monn, J . A.; Prieto, L.; Valli, M. J . PCT Int.
Appl. WO 02068380, 2002. (b) Massey, S. M.; Monn, J . A.; Valli, M. J .
U.S. Patent 5,958,960, 1999.
(
1) Meldrum, B.; Garthwaite, J . Trends Pharmacol. Sci. 1990, 11,
79.
2) Helton, D. R.; Tizzano, J . P.; Monn, J . A.; Schoepp, D. D.;
Kallman, M. J . J . Pharmacol. Exp. Ther. 1998, 284, 651.
3
(
(3) Moghaddam, B.; Adams, B. W. Science 1998, 281, 1349.
(4) Hollman, M.; Heinemann, S. Annu. Rev. Neurosci. 1994, 17, 31.
(5) Nakanishi, S.; Masu, M. Annu. Rev. Biophys. Biomol. Struct.
1
1
7
994, 23, 319.
(6) Schoepp, D. D.; Conn, P. J . Trends Pharmacol. Sci. 1993, 14,
3.
(
, 473.
(
7) Bochaert, J .; Pin, J .; Fagni, L. Fundam. Clin. Pharmacol. 1993,
8) Pin, J .-P.; Duvoisin, R. Neuropharmacology 1995, 34, 1.
9) Conn, P. J .; Pin, J .-P. Annu. Rev. Pharmacol. Toxicol. 1997, 37,
(
2
05.
10) Shimamoto, K.; Ohfune, Y. J . Med. Chem. 1996, 39, 407.
J ullian, N.; Brabet, I.; Pin, J .-P.; Acher, F. C. J . Med. Chem. 1999, 42,
546.
(
1
1
0.1021/jo0495034 CCC: $27.50 © 2004 American Chemical Society
Published on Web 05/28/2004
4
516
J . Org. Chem. 2004, 69, 4516-4519