Communication
Organic & Biomolecular Chemistry
and Systems, Elsevier, Amsterdam, 2003; (d) F. Puntoriero,
P. Ceroni, V. G. Balzani and F. Voegtle, J. Am. Chem. Soc.,
2007, 129, 10714; (e) T. Muraoka, K. Kinbara and T. Aida,
Nature, 2006, 440, 512; (f) V. Ferri, M. Elbing, G. Pace,
M. D. Dickey, M. Zharnikov, P. Samori, M. Mayor and
M. A. Rampi, Angew. Chem., Int. Ed., 2008, 47, 3407;
(g) T. Ikeda and O. Tsutsumi, Science, 1995, 168, 1873;
(h) R. M. Parker, J. C. Gates, H. L. Rogers, P. G. R. Smith and
M. C. Grossel, J. Mater. Chem., 2010, 20, 9118; (i) R. H. Berg,
S. Hvilsted and P. S. Ramanujam, Nature, 1996, 383, 505;
( j) R. G. Anderson and G. Nickless, Analyst, 1967, 92, 207.
3 (a) S. Keiper and J. S. Vyle, Angew. Chem., Int. Ed., 2006, 45,
3306; (b) F. Ravalico, S. L. James and J. S. Vyle, Green Chem.,
2011, 13, 1778; (c) A. J. Harvey and A. D. Abell, Tetrahedron,
2000, 56, 9763; (d) H. Kumar, P. Kumar, B. Narasimhan,
K. Ramasamy, V. Mani, R. K. Mishra and A. B. A. Majeed,
Med. Chem. Res., 2013, 22, 1957; (e) N. Kaloyanov and
R. Stoyanova, Arzneim.-Forsch./Drug Res., 2000, 50, 652;
(f) H. Noda, G. Erős and J. W. Bode, J. Am. Chem. Soc., 2014,
136, 5611; (g) C. M. McKeen, L. J. Brown, J. T. G. Nicol,
J. M. Mellor and T. Brown, Org. Biomol. Chem., 2003, 1, 2267;
(h) E. F. Elslager, D. B. Capps, D. H. Kurtz, L. M. Werbel and
D. F. Worth, J. Med. Chem., 1963, 6, 646; (i) R. C. Brown,
Z. Li, A. J. Rutter, X. Mu, O. H. Weeks, K. Smith and
I. Weeks, Org. Biomol. Chem., 2009, 7, 386.
4 For a review, see: (a) F. Hamon, F. Djedaini-Pilard, F. Barbot
and C. Len, Tetrahedron, 2009, 65, 10105. For recent
examples, see: (b) E. Drug and M. Gozin, J. Am. Chem. Soc.,
2007, 129, 13784; (c) C. Zhang and N. Jiao, Angew. Chem.,
Int. Ed., 2010, 49, 6174; (d) Y. Takeda, S. Okumura and
S. Minakata, Angew. Chem., Int. Ed., 2012, 51, 7804;
(e) S. Cai, H. Rong, X. Yu, X. Liu, D. Wang, W. He and Y. Li,
ACS Catal., 2013, 3, 478; (f) Y. Zhu and Y. Shi, Org. Lett.,
2013, 15, 1942.
5 For selected examples, halogenation: (a) D. R. Fahey, J. Orga-
nomet. Chem., 1971, 27, 283; (b) D. Kalyani, A. R. Dick,
W. Q. Anani and M. S. Sanford, Tetrahedron, 2006, 62, 11483;
(c) X.-T. Ma and S.-K. Tian, Adv. Synth. Catal., 2013, 355, 337;
Arylation: (d) S. Miyamura, H. Tsurugi, T. Satoh and
M. Miura, J. Organomet. Chem., 2008, 693, 2438; (e) C. Qian,
D. Lin, Y. Deng, X.-Q. Zhang, H. Jiang, G. Miao, X. Tang and
W. Zeng, Org. Biomol. Chem., 2014, 12, 5866; Acylation:
(f) H. Li, P. Li and L. Wang, Org. Lett., 2013, 15, 620;
(g) Z. Y. Li, D. D. Li and G. W. Wang, J. Org. Chem., 2013, 78,
10414; (h) F. Xiong, C. Qian, D. Lin, W. Zeng and X. Lu, Org.
Lett., 2013, 15, 5444; (i) H. Song, D. Pi, C. Chen, X. Cui and
Y. Wu, J. Org. Chem., 2014, 79, 2955. Oxygenation:
( j) A. R. Dick, K. L. Hull and M. S. Sanford, J. Am. Chem.
Soc., 2004, 126, 2300; (k) Z. Yin, X. Jiang and P. Sun, J. Org.
Chem., 2013, 78, 10002. Nitrogenation: (l) X. F. Jia and
J. Han, J. Org. Chem., 2014, 79, 4180; (m) H. Wang, Y. Yu,
X. Hong, Q. Tan and B. Xu, J. Org. Chem., 2014, 79, 3279;
(n) T. Ryu, J. Min, W. Choi, W. H. Jeon and P. H. Lee, Org.
Lett., 2014, 16, 2810; (o) B. Majhi, D. Kundu, S. Ahammed
and B. C. Ranu, Chem. – Eur. J., 2014, 20, 9862. Cyanation:
(p) J. Han, C. Pan, X. Jia and C. Zhu, Org. Biomol. Chem.,
Scheme 7 A plausible mechanism.
Scheme 8 Synthetic transformations of o-azobenzamides.
Finally, the exemplified synthetic transformations of
product 3 are shown in Scheme 8. o-Azobenzamide 3aa could
be easily reduced by Zn/NH4Cl to afford hydrazine 6aa in 92%
yield.9 Also, the second C–H bond acylation reaction of 3aa
with benzaldehyde was achieved by using palladium catalysis5f
to give unsymmetrical azoarene 7aa, which is difficult to
access via traditional methods.4
In conclusion, we have developed the first C–H aminocarbo-
nylation of azoarenes with isocyanates by using rhenium-
catalysis. This protocol provides an expedient, operationally
practical, and chemo- and regioselective approach to mono-
C–H functionalized o-azobenzamides with high atom-
economy. Mechanistic studies revealed a deprotonative C–H
activation pathway and identified a five-membered rhenacycle
as the key reaction intermediate.
Financial support from the National Basic Research
Program of China (973 Program) (no. 2011CB808600) and the
National Natural Science Foundation of China (21322203,
21272238, 21472194) are gratefully acknowledged.
Notes and references
1 (a) K. Hunger, Industrial Dyes: Chemistry, Properties, Appli-
cations,
Wiley-VCH,
Weinheim,
Germany,
2003;
(b) A. Bafana, S. S. Devi and T. Chakrabarti, Environ. Rev.,
2011, 19, 350; (c) S. Patai, The Chemistry of the Hydrazo, Azo
and Azoxy Groups, Wiley, Chichester, U.K., 1997, vol. 2, pp.
729–730.
2 (a) G. S. Kumar and D. C. Neckers, Chem. Rev., 1989, 89,
1915; (b) E. Ishow, C. Bellaïche, L. Bouteiller, K. Nakatani
and J. A. Delaire, J. Am. Chem. Soc., 2003, 125, 15744;
(c) H. Dürr and H. Bouas-Laurent, Photochromism: Molecules
Org. Biomol. Chem.
This journal is © The Royal Society of Chemistry 2015