Paper
NJC
force field.61 The docking studies were executed with the help of
AutoDock Vina and AutoDock tools-1.5.6 (ADT)62 and fashioned
using Chimera63 using the protocol of Lamarckian Genetic
Algorithm (LGA).64 The number of docking runs was set to 50.
The conformational cluster analysis was done using the maximum
RMS tolerance of 2.00 and the lowest energy conformer was chosen
for sketching the docked poses.
17 J. Wang, X. Qian and J. Cui, J. Org. Chem., 2006, 71, 4308–4311.
18 M. T. Lee, C. K. Yen, W. P. Yang, H. H. Chen, C. H. Liao,
C. H. Tsai and C. H. Chen, Org. Lett., 2004, 6, 1241–1244.
19 J. M. Hierrezuelo and C. C. Ruiz, J. Phys. Chem. A, 2012, 116,
12476–12485.
20 S. Nad and H. Pal, J. Phys. Chem. A, 2003, 107, 501–507.
21 M. Homocianu, A. Airinei and D. O. Dorohoi, J. Adv. Res.
Phys., 2011, 2, 1–9.
22 Y. Yue, S. Zhao, Y. Sun, X. Yan, J. Liu and J. Zhang, J. Lumin.,
2017, 187, 333–339.
Conflicts of interest
23 A. Garg, D. M. Manidhar, M. Gokara, C. Malleda, C. S. Reddy
and R. Subramanyam, PLoS One, 2013, 8, e63805.
24 Y. Yue, Z. Wang, Z. Wang, Y. Zhang and J. Liu, J. Mol. Struct.,
2018, 1169, 75–80.
There are no conflicts to declare.
Acknowledgements
25 P. Baruah, G. Basumatary, S. O. Yesylevskyy, K. Aguan, G. Bez
and S. Mitra, J. Biomol. Struct. Dyn., 2019, 37, 1750–1765.
26 I. Matei, S. Ionescu and M. Hillebrand, Solute-solvent
hydrogen bond formation in the excited state. Experimental
and theoretical evidence, in Hydrogen bonding and transfer
in the excited state, ed. K.-L. Han and G.-J. Zhao, John Wiley
& Sons Ltd, Chichester, UK, 2010, ch. 4.
The authors acknowledge the support from the Dept. of Science
& Technology (DST), Govt. of India to the Chemistry Department
through FIST program (SR/FST/CSI-194/2008).
Notes and references
27 F. D. Lewis and W. Weigel, J. Phys. Chem. A, 2000, 104,
8146–8153.
1 T. S. Reddy and A. R. Reddy, Dyes Pigm., 2013, 96, 525–534.
2 J. R. Hoult and M. Paya, Gen. Pharmacol., 1996, 27, 713–722.
3 E. C. Gaudino, S. Tagliapietra, K. Martina, G. Palmisano and
G. Cravotto, RSC Adv., 2016, 6, 46394–46405.
4 S. Widmer, M. Dorrestijn, A. Camerlo, S. K. Urek, A. Lobnik,
C. E. Housecroft, E. C. Constableb and L. J. Scherer, Analyst,
2014, 139, 4335–4342.
28 T. S. Singh, S. Mitra, A. K. Chandra, N. Tamai and S. Kar,
J. Photochem. Photobiol., A, 2008, 197, 295–305.
29 J. Zou, Q. Yu and Z. Shang, J. Chem. Soc., 2001, 2, 1439–1443.
30 M. J. Kamlet, J. M. Abboud, M. H. Abraham and R. W. Taft,
J. Org. Chem., 1983, 48, 2877–2887.
´
31 J. Catalan, J. Phys. Chem. B, 2009, 113, 5951–5960.
5 F. J. Duarte, Tunable Laser Optics, New York, Elsevier-
Academic, 2003.
6 K. P. Carter, A. M. Young and A. E. Palmer, Chem. Rev., 2014,
114, 4564–4601.
7 X. M. Peng, G. L. Damu and C. Zhou, Curr. Pharm. Des.,
2013, 19, 3884–3930.
8 M. Mladenovic, N. Vukovic, N. Niciforovic, S. Sukdolak and
S. Solujic, Molecules, 2009, 14, 1495–1512.
32 N. S. Moyon, A. K. Chandra and S. Mitra, J. Phys. Chem. A,
2010, 114, 60–67.
33 N. S. Moyon, P. M. Gashnga, S. Phukan and S. Mitra, Chem.
Phys., 2013, 421, 22–31.
34 N. S. Moyon and S. Mitra, J. Phys. Chem. A, 2011, 115, 2456–2464.
35 M. A. Rohman, P. Baruah, S. O. Yesylevskyy and S. Mitra,
Chem. Phys., 2019, 517, 67–79.
36 H. Dvir, I. Silman, M. Harel, T. L. Rosenberry and J. L. Sussman,
Chem. – Biol. Interact., 2010, 187, 10–22.
37 P. Baruah, M. A. Rohman, S. O. Yesylevskyy and S. Mitra,
Bioimpacts, 2019, 9, 85–96.
38 P. Anand, B. Singh and N. Singh, Bioorg. Med. Chem., 2012,
20, 1175–1180.
39 M. M. Islam, A. B. Gurung, A. Bhatacharjee, K. Aguan and
S. Mitra, Chem. – Biol. Interact., 2016, 249, 1–9.
40 M. A. Rohman, D. Sutradhar, S. Sangilipandi, K. Mohan
Rao, A. K. Chandra and S. Mitra, J. Photochem. Photobiol., A,
2017, 341, 115–126.
9 A. S. Al-Ayed and N. Hamdi, Molecules, 2014, 19, 911–924.
10 K. V. Sashidhara, A. Kumar, M. Kumar, J. Sarkar and
S. Sinha, Bioorg. Med. Chem. Lett., 2010, 20, 7205–7211.
11 O. Pelkonen, H. Raunio, A. Rautio, M. Pasanen and
M. A. Lang, The Metabolism of Coumarin. Coumarins: Biology,
Applications and Mode of Action, Chichester, John Wiley &
Sons, 1997, pp. 67–92.
12 J. I. Weitz, Blood Coagulation and Anticoagulant, Fibrinolytic,
and Antiplatelet Drugs, in Goodman & Gilman’s: The Pharma-
cological Basis of Therapeutics, 12th edn, 2011, ISBN: 978-0-07-
175352-4.
41 J. Kuchlyan, D. Banik, A. Roy, N. Kundu and N. Sarkar,
J. Phys. Chem. B, 2014, 118, 13946–13953.
42 S. Banerjee, S. Roy and B. Bagchi, J. Phys. Chem. B, 2010, 114,
12875–12882.
43 S. Jacob and A. B. Nair, Drug Dev. Res., 2018, 79, 201–217.
44 G. Tiwari, R. Tiwari and A. K. Rai, J. Pharm. BioAllied Sci.,
2010, 2, 72–79.
13 R. D. Thornes, Ir. Med. J., 1983, 76, 225.
14 J. R. Casley-Smith, in Coumarin in the Treatment of Lymphoedema
and Other High-Protein Oedemas. Coumarins: Biology, Applications
and Mode of Action, ed. R. O’Kennedy and R. D. Thornes, John
Wiley & Sons, Chichester, 1997, vol. 46, pp. 143–184.
15 R. M. Christie, K. M. Morgan and M. S. Islam, Dyes Pigm.,
2008, 76, 741–747.
45 B. D. Wang, J. Hai, Z. C. Liu, Q. Wang, Z. Y. Yang and
S. H. Sun, Angew. Chem., Int. Ed., 2010, 49, 4576–4579.
16 W. Lin, L. Yuan, J. Feng and X. Cao, Eur. J. Org. Chem., 2008,
2689–2692.
18724 | New J. Chem., 2019, 43, 18713--18725 This journal is ©The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2019