Vol. 27, No. 5 (2015)
Compound
Synthesis of Salamo-type Bisoximes Based on 3-Ethoxysalicyladehyde and Bis(aminooxy)alkane 1713
TABLE-1
COLOUR, YIELDS, MELTING POINTS, ELEMENTARY ANALYTICAL RESULTS
AND COMPOSITIONS OF THE BISOXIMES H2L1, H2L2, H2L3 AND H2L4
Elemental analysis (%) Found (Calcd.)
m.f. (m.w.)
Colour
m.p. (K)
Yield (%)
C
H
N
C21H26N2O6
402.44
C22H28N2O6
416.47
C23H30N2O6
430.49
C24H32N2O6
444.52
62.61
(62.67)
63.47
(63.45)
64.20
(64.17)
64.97
(64.85)
6.40
(6.41)
6.75
(6.78)
7.01
(7.02)
7.05
(7.26)
7.01
(6.95)
6.66
(6.73)
6.48
(6.51)
6.12
(6.30)
H2L1
H2L2
H2L3
H2L4
White
Pale-yellow
White
462.5-463.5
413-414
76.5
85.8
67.7
57.2
355.5-356.5
354.5-355.5
Pale-yellow
TABLE-2
IR SPECTRAL DATA FOR THE BISOXIMES H2L1, H2L2, H2L3 AND H2L4 (cm-1)
Compound
ν(O-H)
ν (CH2)
ν (C=N)
ν (Ar-O)
ν (C-C)benzene ring
H2L1
H2L2
H2L3
H2L4
3410
3427
3441
3435
2970, 2885
2977, 2882
2941, 2880
2975, 2879
1605
1607
1611
1608
1247
1252
1261
1256
1446
1475
1481
1479
TABLE-3
UV-VISIBLE SPECTRA AND 1H NMR DATA FOR THE SYNTHESIZED BISOXIMES H2L1, H2L2, H2L3 AND H2L4
π-π*(nm)
1H NMR (400 MHz, DMSO-d6, δ/ppm)
2.18 (m, J = 6.5 Hz, 2H, CH2), 3.92 (s, 6H, CH3), 4.17 (m, J = 7.2 Hz, 4H, CH2-O), 4.36 (m, J = 6.2, 1.4
Hz, 4H, CH2-O), 6.78 (s, 2H, PhH), 6.85 (m, 2H, PhH), 6.92 (dd, J = 7.6, 2.2 Hz, 2H, PhH), 8.25 (s, 2H,
N=CH), 9.89 (s, 2H, OH).
Compound
H2L1
272, 310
2.22 (m, J = 6.2 Hz, 4H, CH2), 3.90 (s, 6H, CH3), 4.16 (m, J = 7.0 Hz, 4H, CH2-O), 4.37 (m, J = 6.0, 1.4
Hz, 4H, CH2-O), 6.78 (s, 2H, PhH), 6.85 (m, 2H, PhH), 6.92 (dd, J = 7.2, 2.3 Hz, 2H, PhH), 8.23 (s, 2H,
N=CH), 9.87 (s, 2H, OH).
2.19 (m, J = 6.2 Hz, 6H, CH2), 3.91 (s, 6H, CH3), 4.18 (m, J = 7.4 Hz, 4H, CH2-O), 4.35 (m, J = 6.3, 1.4
Hz, 4H, CH2-O), 6.78 (s, 2H, PhH), 6.85 (m, 2H, PhH), 6.92 (dd, J = 7.4, 2.2 Hz, 2H, PhH), 8.26 (s, 2H,
N=CH), 9.88 (s, 2H, OH).
2.20 (m, J = 6.0 Hz, 8H, CH2), 3.93 (s, 6H, CH3), 4.18 (m, J = 7.0 Hz, 4H, CH2-O), 4.35 (m, J = 6.4, 1.4
Hz, 4H, CH2-O), 6.78 (s, 2H, PhH), 6.85 (m, 2H, PhH), 6.92 (dd, J = 7.5, 2.0 Hz, 2H, PhH), 8.21 (s, 2H,
N=CH), 9.86 (s, 2H, OH).
H2L2
H2L3
H2L4
274, 315
272, 312
273, 321
two intense peaks at around 272 and 310 nm. The former
REFERENCES
*
absorption peaks at about 270 nm can be assigned to the π-π
1. T. Katsuki, Coord. Chem. Rev., 140, 189 (1995).
2. N. Hoshino, Coord. Chem. Rev., 174, 77 (1998).
3. J.-P. Costes, F. Dahan and A. Dupuis, Inorg. Chem., 39, 165 (2000).
4. H. Chen and J. Rhodes, J. Mol. Med., 74, 497 (1996).
5. S. Goyal and K. Lal, J. Indian Chem. Soc., 66, 477 (1989).
6. H.L. Amjid, I. Siddiqui and M.A. Chaudhary, Chem. Pharm. Bull. (Tokyo),
7, 1070 (2007).
7. H. Chen and J. Rhodes, J. Mol. Med., 74, 497 (1996).
8. S.T. Girousi, E.E. Golia, A.N. Voulgaropoulos and A.J. Maroulis,
Fresenius J. Anal. Chem., 358, 667 (1997).
9. M.N. Desai, P.O. Chauhan and N. Shah, Proceeding of 7th European
Symposium on "Corrosion Inhibitors" Sez V. Ann. Univ. Ferrara Italy,
p. 1199 (1990).
10. S. Di Bella and I. Fragalà, Synth. Met., 115, 191 (2000).
11. W.K. Dong, Y.X. Sun, Y.P. Zhang, L. Li, X.-N. He and X.-L. Tang,
Inorg. Chim. Acta, 362, 117 (2009).
12. W.K. Dong, J.H. Feng and X.Q. Yang, Synth. React. Inorg. Met.-Org.
Nano-Met. Chem., 37, 189 (2007).
13. W.K. Dong and J.G. Duan, J. Coord. Chem., 61, 781 (2008).
14. W.K. Dong, J.G. Duan and G.L. Liu, Transition Met. Chem., 32, 702
(2007).
15. S. Akine, T. Taniguchi, W. Dong, S. Masubuchi and T. Nabeshima, J.
Org. Chem., 70, 1704 (2005).
16. J.A. Faniran, K.S. Patel and J.C. Bailar Jr., J. Inorg. Nucl. Chem., 36,
1547 (1974).
transition of the naphthalene rings, while the latters can be
*
attributed to the intra-ligand π-π transition of the C=N bonds17.
It is of note that there was no absorption around 400 nm, which
is seen in the corresponding Salen derivatives. The absorption
is ascribed to the quinoid form of H2salen17.
The 1H NMR spectra of the Salamo-type bisoximes H2L1,
H2L2, H2L3 and H2L4 in DMSO-d6 are shown in Table-3. The
1H NMR spectra showed a singlet at about 8.21-8.26 ppm
indicating the existence of oxime bonds17,18
.
Conclusion
Four Salamo-type bisoximes H2L1-H2L4 have been designed
and successfully synthesized by the reaction of 2 equivalents
of 3-ethoxysalicyladehyde with 1,3-bis(aminooxy)propane,
1,4-bis(aminooxy)butane, 1,5-bis(aminooxy)pentane or 1,6-
bis(aminooxy)hexane under comfortable conditions, respec-
tively.
ACKNOWLEDGEMENTS
This work was supported by the Science and Technology
support funds of Gansu Province (613028).
17. H.E. Smith, Chem. Rev., 83, 359 (1983).
18. S. Akine, T. Taniguchi and T. Nabeshima, Chem. Lett., 30, 682 (2001).