F
J. Huo et al.
Letter
Synlett
Takizawa, S.; Jiang, Y.; Sasai, H. Chem. Eur. J. 2019, 25, 9866.
(h) Wang, G.; Sun, J.; Wang, K.; Han, J.; Li, H.; Duan, G.; You, G.;
Li, F.; Xia, C. Org. Chem. Front. 2019, 6, 1608.
(16) (a) Scholz, U.; Winterfeldt, E. Nat. Prod. Rep. 2000, 17, 349. (b) Li,
S. M. Nat. Prod. Rep. 2010, 27, 57. (c) Lindel, T.; Marsch, N.; Adla,
S. K. Top. Curr. Chem. 2012, 309, 67. (d) Xu, L. L.; Hai, P.; Zhang, S.
B.; Xiao, J. F.; Gao, Y.; Ma, B. J.; Fu, H. Y.; Chen, Y. M.; Yang, X. L.
J. Nat. Prod. 2019, 82, 221.
(4) (a) Knochel, P.; Ila, H.; Markiewicz, J.; Malakhov, V. Synthesis
2013, 45, 2343. (b) El Kazzouli, S.; Guillaumet, G. Tetrahedron
2016, 72, 6711.
(17) (a) Yu, S.; Li, X. Org. Lett. 2014, 16, 1200. (b) Yu, D. G.; Gensch, T.;
de Azambuja, F.; Vasquez-Cespedes, S.; Glorius, F. J. Am. Chem.
Soc. 2014, 136, 17722. (c) Park, J.; Mishra, N. K.; Sharma, S.; Han,
S.; Shin, Y.; Jeong, T.; Oh, J. S.; Kwak, J. H.; Jung, Y. H.; Kim, I. S.
J. Org. Chem. 2015, 80, 1818. (d) Suzuki, Y.; Sun, B.; Sakata, K.;
Yoshino, T.; Matsunaga, S.; Kanai, M. Angew. Chem. Int. Ed. 2015,
54, 9944. (e) Ackermann, L.; Moselage, M.; Sauermann, N.;
Koeller, J.; Liu, W.; Gelman, D. Synlett 2015, 26, 1596. (f) Choi,
M.; Park, J.; Sharma, S.; Jo, H.; Han, S.; Jeon, M.; Mishra, N. K.;
Han, S. H.; Lee, J. S.; Kim, I. S. J. Org. Chem. 2016, 81, 4771.
(g) Chen, S. Y.; Li, Q.; Wang, H. J. Org. Chem. 2017, 82, 11173.
(18) (a) Xu, L.; Zhang, C.; He, Y.; Tan, L.; Ma, D. Angew. Chem. Int. Ed.
2016, 55, 321. (b) Xu, L.; Tan, L.; Ma, D. J. Org. Chem. 2016, 81,
10476. (c) Xu, L.; Tan, L.; Ma, D. Synlett 2017, 28, 2839. (d) Peng,
Q.; Hu, J.; Huo, J.; Yuan, H.; Xu, L.; Pan, X. Org. Biomol. Chem.
2018, 16, 4471. (e) Chen, Y.; Zhang, R.; Peng, Q.; Xu, L.; Pan, X.
Chem. Asian J. 2017, 12, 2804.
(5) (a) Song, G.; Li, X. Acc. Chem. Res. 2015, 48, 1007. (b) Gensch, T.;
Hopkinson, M. N.; Glorius, F.; Wencel-Delord, J. Chem. Soc. Rev.
2016, 45, 2900. (c) Zhu, R. Y.; Farmer, M. E.; Chen, Y. Q.; Yu, J. Q.
Angew. Chem. Int. Ed. 2016, 55, 10578. (d) Gandeepan, P.; Cheng,
C. H. Chem. Asian J. 2016, 11, 448. (e) Yang, Y. F.; Hong, X.; Yu, J.
Q.; Houk, K. N. Acc. Chem. Res. 2017, 50, 2853. (f) Loup, J.;
Dhawa, U.; Pesciaioli, F.; Wencel-Delord, J.; Ackermann, L.
Angew. Chem. Int. Ed. 2019, 58, 12803.
(6) Wencel-Delord, J.; Glorius, F. Nat. Chem. 2013, 5, 369.
(7) (a) Ohnmacht, S. A.; Culshaw, A. J.; Greaney, M. F. Org. Lett.
2010, 12, 224. (b) Naas, M.; El Kazzouli, S.; Essassi el, M.;
Bousmina, M.; Guillaumet, G. J. Org. Chem. 2014, 79, 7286. (c) El
Kazzouli, S.; Koubachi, J.; El Brahmi, N.; Guillaumet, G. RSC Adv.
2015, 5, 15292.
(8) Naas, M.; El Kazzouli, S.; El Essassi, M.; Bousmina, M.;
Guillaumet, G. Org. Lett. 2015, 17, 4320.
(9) (a) Singsardar, M.; Dey, A.; Sarkar, R.; Hajra, A. J. Org. Chem.
2018, 83, 12694. (b) Ghosh, P.; Mondal, S.; Hajra, A. ACS Omega
2019, 4, 9049.
(10) (a) Ghosh, P.; Mondal, S.; Hajra, A. J. Org. Chem. 2018, 83, 13618.
(b) Murugan, A.; Babu, V. N.; Polu, A.; Sabarinathan, N.;
Bakthadoss, M.; Sharada, D. S. J. Org. Chem. 2019, 84, 7796.
(11) Dey, A.; Hajra, A. Adv. Synth. Catal. 2019, 361, 842.
(12) Singsardar, M.; Laru, S.; Mondal, S.; Hajra, A. J. Org. Chem. 2019,
84, 4543.
(13) (a) Chen, Z.; Wang, B.; Zhang, J.; Yu, W.; Liu, Z.; Zhang, Y. Org.
Chem. Front. 2015, 2, 1107. (b) Rej, S.; Chatani, N. Angew. Chem.
Int. Ed. 2019, 58, 8304. (c) Zhang, Q.; Shi, B. F. Chin. J. Chem.
2019, 37, 647. (d) Dey, A.; Sinha, S. K.; Achar, T. K.; Maiti, D.
Angew. Chem. Int. Ed. 2019, 58, 10820.
(19) Preparation of 3aa; Typical Procedure: To a 10 mL dry Schlenk
tube with a stirring bar, indazole substrate 1a (0.2 mmol),
[RhCp*Cl2]2 (6.2 mg, 5 mol%), Cu(OAc)2·H2O (20 mg, 50 mol%),
AgNTf2 (15.5 mg, 20 mol%), and 4Å MS (100 mg) were added.
The tube was evacuated and backfilled with nitrogen before
allyl methyl carbonate 2a (116 L, 1.0 mmol) and 1,2,3-trichlo-
ropropane (1.0 mL) were added. The reaction mixture was
stirred at 65 °C for 24 h. After cooling to room temperature, the
reaction mixture was purified by chromatography on silica with
a gradient eluent of petroleum ether and ethyl acetate to give
the corresponding product.
7-Allyl-N,N-diisopropyl-1H-indazole-1-carboxamide (3aa):
Yield: 82% (46.7 mg); white solid. 1H NMR (500 MHz, CDCl3): =
8.07 (s, 1 H), 7.61 (d, J = 7.9 Hz, 1 H), 7.27 (d, J = 7.1 Hz, 1 H),
7.19 (t, J = 7.5 Hz, 1 H), 6.06–6.00 (m, 1 H), 5.07 (d, J = 10.1 Hz,
1 H), 4.96 (d, J = 17.2 Hz, 1 H), 4.12 (brs, 1 H), 3.77 (d, J = 4.7 Hz,
2 H), 3.61 (brs, 1 H), 1.56 (brs, 6 H), 1.26 (brs, 6 H). 13C NMR
(125 MHz, CDCl3): = 151.62, 139.15, 136.55, 136.18, 128.91,
125.84, 124.68, 122.73, 119.02, 116.28, 51.36, 46.29, 36.71,
20.59, 20.08. HRMS (ESI): m/z [M + H]+ calcd for C17H24N3O+:
286.19139; found: 286.19119.
(14) Guo, L.; Chen, Y.; Zhang, R.; Peng, Q.; Xu, L.; Pan, X. Chem. Asian
J. 2017, 12, 289.
(15) (a) Mishra, N. K.; Sharma, S.; Park, J.; Han, S.; Kim, I. S. ACS Catal.
2017, 7, 2821. (b) Thoke, M. B.; Kang, Q. Synthesis 2019, 51,
2585.
© 2019. Thieme. All rights reserved. Synlett 2019, 30, A–F