8496 Journal of Medicinal Chemistry, 2010, Vol. 53, No. 24
Eliahu et al.
(19) Fuerstenau, C. R.; Trentin, D. D. S.; Barreto-Chaves, M. L. M.;
Sarkis, J. J. F. Ecto-nucleotide pyrophosphatase/phosphodiester-
ase as part of a multiple system for nucleotide hydrolysis by
platelets from rats: Kinetic characterization and biochemical prop-
erties. Platelets 2006, 17, 84–91.
(20) Grobben, B.; Anciaux, K.; Roymans, D.; Stefan, C.; Bollen, M.;
Esmans, E. L.; Slegers, H. An ecto-nucleotide pyrophosphatase is
one of the main enzymes involved in the extracellular metabolism
of ATP in rat C6 glioma. J. Neurochem. 1999, 72, 826–834.
(21) Yano, Y.; Hayashi, Y.; Sano, K.; Shinmaru, H.; Kuroda, Y.;
Yokozaki, H.; Yoon, S.; Kasuga, M. Expression and localization
of ecto-nucleotide pyrophosphatase/phosphodiesterase I-3 (E-NPP3/
CD203c/PD-Iβ/B10/gp130RB13-6) in human colon carcinoma. Int.
J. Mol. Med. 2003, 12, 763–766.
endogenous agonists of the purinergic system. Br. J. Pharmacol.
2009, 157, 1142–1153.
(39) Tenenbaum, J.; Muniz, O.; Schumacher, H. R.; Good, A. E.;
Howell, D. S. Comparison of phosphohydrolase activities from
articular cartilage in calcium pyrophosphate deposition disease
and primary osteoarthritis. Arthritis Rheum. 1981, 24, 492–500.
(40) Sellers, L. A.; Simon, J.; Lundahl, T. S.; Cousens, D. J.;
Humphrey, P. P. A.; Barnard, E. A. Adenosine nucleotides
acting at the human P2Y1 receptor stimulate mitogen-activated
protein kinases and induce apoptosis. J. Biol. Chem. 2001, 276,
16379–16390.
ꢀ
(41) Eliahu, S. E.; Camden, J.; Lecka, J.; Weisman, G. A.; Sevigny, J.;
ꢀ
Gelinas, S.; Fischer, B. Identification of hydrolytically stable and
selective P2Y1 receptor agonists. Eur. J. Med. Chem. 2009, 44,
1525–1536.
(22) Savaskan, N. E.; Rocha, L.; Kotter, M. R.; Baer, A.; Lubec, G.;
van Meeteren, L. A.; Kishi, Y.; Aoki, J.; Moolenaar, W. H.; Nitsch,
R.; Braeuer, A. U. Autotaxin (NPP-2) in the brain: Cell type-
specific expression and regulation during development and after
neurotrauma. Cell. Mol. Life Sci. 2007, 64, 230–243.
(42) Wojcik, M.; Cieslak, M.; Stec, W. J.; Goding, J. W.; Koziolkiewicz,
M. Nucleotide pyrophosphatase/phosphodiesterase 1 is responsi-
ble for degradation of antisense phosphorothioate oligonucleo-
tides. Oligonucleotides 2007, 17, 134–145.
(43) Koh, E.; Clair, T.; Woodhouse, E. C.; Schiffmann, E.; Liotta,
L.; Stracke, M. Site-directed mutations in the tumor-associated
cytokine, autotaxin, eliminate nucleotide phosphodiesterase,
lysophospholipase D, and motogenic activities. Cancer Res.
2003, 63, 2042–2045.
(23) Maldonado, P. A.; Correa, M. d. C.; Vargas Becker, L.; Flores, C.;
Moretto, M. B.; Morsch, V.; Schetinger, M. R. C. Ectonucleotide
pyrophosphatase/phosphodiesterase (E-NPP) and adenosine deam-
inase (ADA) activities in patients with uterine cervix neoplasia. Clin.
Biochem. 2008, 41, 400–406.
(44) Bar, H. P.; Simonson, L. P. Inhibition of extracellular and purified
50-nucleotidase from rat heart. Recent Adv. Stud. Card. Struct.
Metab. 1975, 10, 583–590.
(24) Stefan, C.; Jansen, S.; Bollen, M. NPP-type ectophosphodies-
terases: Unity in diversity. Trends Biochem. Sci. 2005, 30, 542–550.
(25) Ruecker, B.; Almeida, M. E.; Libermann, T. A.; Zerbini, L. F.;
Wink, M. R.; Sarkis, J. J. F. Biochemical characterization of ecto-
nucleotide pyrophosphatase/phosphodiesterase (E-NPP, E.C.
3.1.4.1) from rat heart left ventricle. Mol. Cell. Biochem. 2007,
306, 247–254.
(45) Eliahu, S.; Martin-Gil, A.; Perez de Lara, M. J.; Pintor, J.; Camden,
ꢀ
J.; Weisman, G. A.; Lecka, J.; Sevigny, J.; Fischer, B. 2-MeS-β,
γ-CCl2-ATP is a potent agent for reducing intraocular pressure.
J. Med. Chem. 2010, 53, 3305–3319.
ꢀ
(26) Munkonda, M. N.; Kauffenstein, G.; Kukulski, F.; Levesque,
S. A.; Legendre, C.; Pelletier, J.; Lavoie, E. G.; Lecka, J.; Sevigny,
(46) Shaw, B. R.; Sergueev, D.; He, K.; Porter, K.; Summers, J.;
Sergueeva, Z.; Rait, V. Boranophosphate backbone: A mimic of
phosphodiesters, phosphorothioates, and methylphosphonates.
Methods Enzymol. 2000, 313, 226–257.
(47) Shaver, S. R.; Rideout, J. L.; Pendergast, W.; Douglass, J. G.;
Brown, E. G.; Boyer, J. L.; Patel, R. I.; Redick, C. C.; Jones, A. C.;
Picher, M.; Yerxa, B. R. Structure-activity relationships of dinu-
cleotides: Potent and selective agonists of P2Y receptors. Puriner-
gic Signalling 2005, 1, 183–191.
(48) Communi, D.; Janssens, R.; Robaye, B.; Zeelis, N.; Boeynaems,
J.-M. Role of P2Y11 receptors in hematopoiesis. Drug Dev. Res.
2001, 52, 156–163.
(49) Patel, K.; Barnes, A.; Camacho, J.; Paterson, C.; Boughtflower, R.;
Cousens, D.; Marshall, F. Activity of diadenosine polyphosphates
at P2Y receptors stably expressed in 1321N1 cells. Eur. J. Pharma-
col. 2001, 430, 203–210.
ꢀ
J. Inhibition of human and mouse plasma membrane bound
NTPDases by P2 receptor antagonists. Biochem. Pharmacol.
2007, 74, 1524–1534.
(27) Khan, K. M.; Fatima, N.; Rasheed, M.; Jalil, S.; Ambreen, N.;
Perveen, S.; Choudhary, M. I. 1,3,4-Oxadiazole-2(3H)-thione and
its analogues: A new class of non-competitive nucleotide pyrophos-
phatases/phosphodiesterases 1 inhibitors. Bioorg. Med. Chem.
2009, 17, 7816–7822.
(28) Choudhary, M. I.; Fatima, N.; Khan, K. M.; Jalil, S.; Iqbal, S.;
Atta-ur-Rahman New biscoumarin derivatives: Cytotoxicity and
enzyme inhibitory activities. Bioorg. Med. Chem. 2006, 14, 8066–
8072.
(29) Zatorski, A.; Goldstein, B. M.; Colby, T. D.; Jones, J. P.; Pankie-
wicz, K. W. Potent inhibitors of human inosine monophosphate
dehydrogenase type II. Fluorine-substituted analogues of thiazole-
4-carboxamide adenine dinucleotide. J. Med. Chem. 1995, 38,
1098–1105.
(30) Nahum, V.; Fischer, B. Boranophosphate salts as an excellent
mimic of phosphate salts: Preparation, characterization, and prop-
erties. Eur. J. Inorg. Chem. 2004, 4124–4131.
(50) Nahum, V.; Zuendorf, G.; Levesque, S. A.; Beaudoin, A. R.;
Reiser, G.; Fischer, B. Adenosine 50-O-(1-boranotriphosphate)
derivatives as novel P2Y1 receptor agonists. J. Med. Chem. 2002,
45, 5384–5396.
(51) Pankiewicz, K. W.; Lesiak, K.; Watanabe, K. A. Efficient synthesis
of methylenebis(phosphonate) analogs of P1,P2-disubstituted pyro-
phosphates of biological interest. A novel plausible mechanism.
J. Am. Chem. Soc. 1997, 119, 3691–3695.
(31) Davisson, V. J.; Davis, D. R.; Dixit, V. M.; Poulter, C. D. Synthesis
of nucleotide 50-diphosphates from 50-O-tosyl nucleosides. J. Org.
Chem. 1987, 52, 1794–1801.
ꢀ
(52) Kaczmarek, E.; Koziak, K.; Sevigny, J.; Siegel, J. B.; Anrather, J.;
(32) Liang, F.; Jain, N.; Hutchens, T.; Shock, D. D.; Beard, W. A.;
Wilson, S. H.; Chiarelli, M. P.; Cho, B. P. R,β-Methylene-
20-deoxynucleoside 50-Triphosphates as noncleavable substrates
for DNA polymerases: Isolation, characterization, and stability
studies of novel 20-deoxycyclonucleosides, 3,50-cyclo-dG, and
2,50-cyclo-dT. J. Med. Chem. 2008, 51, 6460–6470.
Beaudoin, A. R.; Bach, F. H.; Robson, S. C. Identification and
characterization of CD39/vascular ATP diphosphohydrolase.
J. Biol. Chem. 1996, 271, 33116–33122.
(53) Knowles, A. F.; Chiang, W.-C. Enzymatic and transcriptional
regulation of human ecto-ATPase/E-NTPDase 2. Arch. Biochem.
Biophys. 2003, 418, 217–227.
(33) Hoard, D. E.; Ott, D. G. Conversion of mono- and oligodeoxyr-
ibonucleotides to 50-triphosphates. J. Am. Chem. Soc. 1965, 87,
1785–1788.
(34) Levesque, S. A.; Lavoie, E. G.; Lecka, J.; Bigonnesse, F.; Sevigny,
J. Specificity of the ecto-ATPase inhibitor ARL 67156 on human
and mouse ectonucleotidases. Br. J. Pharmacol. 2007, 152, 141–
150.
(35) Baricault, L.; Denariaz, G.; Houri, J.-J.; Bouley, C.; Sapin, C.;
Trugnan, G. Use of HT-29, a cultured human colon cancer cell line,
to study the effect of fermented milks on colon cancer cell growth
and differentiation. Carcinogenesis 1995, 16, 245–252.
(36) Stefan, C.; Jansen, S.; Bollen, M. Modulation of purinergic signal-
ing by NPP-type ectophosphodiesterases. Purinergic Signalling
2006, 2, 361–370.
(37) Rotlian, P.; Asensio, A. C.; Ramos, A.; Rodriguez-Ferrer, C. R.;
Oaknin, S. Ectoenzymatic hydrolysis of the signalling nucleotides
diadenosine polyphosphates. Recent Res. Dev. Biochem. 2002, 3,
191–209.
(54) Smith, T. M.; Kirley, T. L. Cloning, sequencing, and expression
of a human brain ecto-apyrase related to both the ecto-ATPases
and CD39 ecto-apyrases. Biochim. Biophys. Acta 1998, 1386,
65–78.
ꢀ
ꢀ
ꢀ
(55) Fausther, M.; Lecka, J.; Kukulski, F.; Levesque, S. A.; Pelletier, J.;
ꢀ
Zimmermann, H.; Dranoff, J. A.; Sevigny, J. Cloning, purification,
and identification of theliver canalicular ecto-ATPase as NTPDase8.
Am. J. Physiol. 2007, 292, G785–G795.
(56) Jin-Hua, P.; Goding, J. W.; Nakamura, H.; Sano, K. Molecular
cloning and chromosomal localization of PD-Iβ (PDNP3), a new
member of the human phosphodiesterase I genes. Genomics 1997,
45, 412–415.
(57) Bradford, M. M. A rapid and sensitive method for the quantitation of
microgram quantities of protein utilizing the principle of protein-
dye binding. Anal. Biochem. 1976, 72, 248–254.
(58) Baikov, A. A.; Kasho, V. N.; Avaeva, S. M. Inorganic pyrophos-
phatase as a label in heterogeneous enzyme immunoassay.
Anal. Biochem. 1988, 171, 271–276.
(38) Jankowski, V.; van der Giet, M.; Mischak, H.; Morgan, M.;
Zidek, W.; Jankowski, J. Dinucleoside polyphosphates: Strong
(59) Ecke, D.; Tulapurkar, M. E.; Nahum, V.; Fischer, B.; Reiser, G.
Oppositediastereoselective activationofP2Y1 andP2Y11 nucleotide